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Abstract

A two-parameter distribution on a bounded domain is studied in this work. This distribution, called

l-logistic distribution, provides great flexibility and has the uniform distribution as a particular

case. In addition, it has an explicit distribution function that facilitates easy random number

generation. Several properties of the distribution are studied including skewness and kurtosis.

Bayesian inference is discussed with non informative and informative prior distributions. Simulation

studies considering prior sensitivity analysis and parameter recovery studies show the robustness

of the proposed estimation method and the efficiency of the algorithm adopted. In addition, a

regression model considering with the response following the l-logistic distribution is introduced.

Applications to Study Poverty and Inequality in Brazil are performed showing a comparison of

results obtained from the beta and l-logistic distributions. The obtained results show that when

the contain potential outliers, the l-logistic model provides a better fit for these data than the beta

model.

Key words: Bayesian analysis, l-logistic distribution, Regression analysis, Gini index, Beta distribu-

tion.

1 Introduction

Despite many alternatives and generalizations present in the literature, the beta distribution

is still a popular family of continuous distributions with bounded support. Recently, Gómez-Déniz

et al. (2014) and Mitnik and Baek (2013) proposed new alternatives to beta distribution. However,

there are still continuous distributions with continuous bounded support that need further study. For

example, Kotz and van Dorp (2004) discuss such distributions with attractive statistical properties

that can be useful in various applied fields. In this work, we discuss a continuous distribution on
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unit interval, which we refer to as l-logistic distribution. We discuss some of its properties concerning

the shape of the probability density function (pdf), the cumulative distribution function (cdf), the

percentiles, and some re-parameterizations. The generation of random numbers from the l-logistic

distribution is also discussed. The moments and some descriptive measures such as mode, skewness,

and kurtosis are also presented. The l-logistic distribution was originally proposed by Tadikamalla

and Johnson (1982), but a new parameterization is presented here, with an emphasis on regression

analysis, based on this model.

We adopt a Bayesian approach using Markov chain Monte Carlo (MCMC) algorithm for our

modeling framework. The issues of model fitting is addressed via Gibbs sampling suitable, choice

of prior distributions, and model comparison criteria. In this context, we report two studies with

simulated data sets to investigate the performance of the proposed estimation method concerning

parameter recovery and influence of the prior distributions. Results obtained from the simulation

studies display that the proposed estimation works very well.

Finally, we apply the model to social data, in which the proportion of children vulnerable to

poverty and the Gini index of the municipalities of the state of Alagoas in Brazil for the 2010 season

are modeled. The Gini index is modeled as a function of the percentage of people employed in the

manufacturing industry. For the case of the l-logistic distribution, we use the median regression model

in the context of quantile regression. Quantile regression (QR) models were introduced by Koenker and

Bassett (1978) and can model conditional quantiles as functions of predictors. The median regression

model accomplishes the same goal in order to represent the relationship between the median (central

location) of the response and a set of covariates. If the data are highly skewed, since the median

remains robust is a natural measure of the center, the conditional median modeling is more useful

than conditional mean modeling in this context. This fact is seen in our first application.

The rest of the paper is organized as follows. In Section 2, we present the pdf, the cdf,

the quantile function, and also describe the generation of the l-logistic distribution. In Section 3, we

study some characteristics of the distribution, other parameterizations, some related distributions, the

moments, and the skewness and kurtosis of the l-logistic distribution. Section 4 is dedicated to the

Bayesian estimation of the model parameters. Some methods for model comparison and diagnosis are

also discussed in this section. Section 5 presents the results of a simulation study that examines a prior

sensitivity analysis and the estimation of the model parameters. Section 6 discusses an application of

the model to a on social data from the state of Alagoas, Brazil (proportion of children vulnerable to

poverty and Gini index as function of the percentage of people employed in manufacturing). Finally,

some concluding comments are made in Section 7.
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2 The L-logistic Distribution

We say that the r.v. Y follows a l-logistic distribution if its probability density function (pdf)

is given by

f(y|m, b) =
b(1−m)bmbyb−1(1− y)b−1

[(1−m)byb +mb(1− y)b]
2 , 0 < y < 1, 0 < m < 1, b > 0. (1)

The parameters m and b allow l-logistic distribution, denoted by Y ∼ LL(m, b), to take on a variety

of density shapes (see Figure 1 and 2). Note that when we set m = 0.5 and b = 1 in (1), then the

pdf of the l-logistic distribution simply becomes the pdf of the standard uniform distribution. m is a

location parameter, which simply shifts the graph to the left or right on the horizontal axis. On the

other hand, b is a shape parameter that governs the shape of the distribution. The l-logistic density

is uni-modal (or “uni-antimodal”), increasing, decreasing, or constant, depending on the values of its

parameters. More details on this issue are presented with another parameterization of the l-logistic

model in Section 3.
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Figure 1: L-logistic probability density function for scale parameter m = 0.2, 0.5 and 0.8 and some

values of parameter b.
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Figure 2: L-logistic probability density function for shape parameter b = 0.5, 1 and 2 and some values

of scale parameter m.

The cumulative distribution function of the l-logistic distribution is given by

FY (y|m, b) =

(
1 +

(
m(1− y)

y(1−m)

)b)−1
, 0 < y < 1. (2)

which can be readily inverted to yield the quantile function.

QY (p) = F−1Y (p) =
mp1/b

(1− p)1/b(1−m) + p1/bm
, 0 ≤ p ≤ 1. (3)
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This would readily enable a quantile-based analysis of this model; for example, see Nair et al. (2013)

for pertinent details. Note that if p = (1 − p) = 0.5, then Q(p) = m, which means that the location

parameter m is indeed the 50th percentile or the median of the l-logistic distribution.

Equation (3) facilitates simple random variate generation. If U ∼ Uniform(0, 1), then

X = Q(U) =
mU1/b

(1− U)1/b(1−m) + U1/bm
∼ LL(m, b) (4)

We can also express the inter-quartile range (IQR) as

IQR = Q(0.75)−Q(0.25) =
m31/b

(1−m) + 31/bm
− m

31/b(1−m) +m
. (5)

The IQR has a breakdown point of 50%, and is often preferred over range. When the distribution is

symmetric, half IQR equals the median absolute deviation (MAD), and it is often to detect outliers

in data.

3 Properties of the L-logistic distribution

This section discuss some properties of the L-logistic distribution such as some related distri-

butions, measures of skewness and kurtosis, mode and the moments. Some pertinent derivations are

presented in Appendix A.

3.1 Related Distributions

The following property shows the relation between l-logistic distribution and logistic distri-

bution.

Property 3.1. If Y ∼ LL (m, b) then Z = b log
(
Y (1−m)
m(1−Y )

)
has the standard logistic distribution.

Next, we present two alternative parameterizations for the l-logistic distribution.

Property 3.2. If Y ∼ LL (m, b), then, with m = e−
δ
b

1+e−
δ
b

(δ > 0), the pdf and cdf of the l-logistic

distribution become

f(y|δ, b) =
beδyb−1(1− y)b−1

[ybeδ + (1− y)b]
2 , 0 < y < 1, (6)

and

FY (y|δ, b) =

(
1 + e−δ

(
1− y
y

)b)−1
, 0 < y < 1, (7)

respectively, where b > 0 and δ ∈ R are both shape parameters.

The parameterization given in (6) and (7) is denoted by Y ∼ LL(δ, b). The pdf of Y ∼ LL(δ, b)

was introduced by Tadikamalla and Johnson (1982) and Wang and Rennolls (2005), which extended

4



this pdf for any bounded interval by introducing two extra parameters. These authors referred to this

distribution as logit-logistic distribution.

Property 3.3. If Y ∼ LL (m, b) and µ = 1

1+( m
1−m)

b , then the pdf and cdf the alternative parametriza-

tion of l-logistic distribution, denoted by Y ∼ LL(µ, b), is given by

f(y|µ, b) =
bµ(1− µ)yb−1(1− y)b−1

[ybµ+ (1− y)b(1− µ)]
2 , 0 < y < 1, (8)

and

FY (y|µ, b) =

(
1 +

(
1− µ
µ

)(
1− y
y

)b)−1
, 0 < y < 1, (9)

with µ ∈ (0, 1) and b > 0.

Note that, although the expressions of the alternative parameterization of the l-logistic distri-

bution have simple expresions for the pdf and cdf, they do not have the median as location parameter.

An advantage of the parametrization in (1) and (2) is that the parameter m is the median of the

distribution and, consequently, the interpretation of this parametrization becomes more easier.

Property 3.4. If Y ∼ LL (δ, b), then Z
′

= δ+b log
(

Y
1−Y

)
has the standard logistic distribution. The

reciprocal property was first introduced by Tadikamalla and Johnson (1982), based on an equivalent

transformation described by Johnson et al. (1994, pg. 34-49) and first investigated by Johnson (1949),

for the case of the standard normal distribution. In this case, Y follows the SB-Johnson distribution.

Property 3.5. A more general form of the l-logistic distribution can be given as

f(y|m, b, c, d) =
(d− c)b(1−m)bmb(y − c)b−1(d− y)b−1

[(1−m)b(y − c)b +mb(d− y)b]
2 , (10)

c < y < d, with c, d ∈ R. To see justifications of these propiertes, see Appendix A.

3.2 Mode

Property 3.6. For b > 1, the mode of the l-logistic distribution is the solution of the equation(
1−m
m

)b
=

(
1− y0
y0

)b b+ 2y0 − 1

b− 2y0 + 1
. (11)

Note that, upon taking δ = −b log
(

m
1−m

)
, the mode y0 can be obtained by solving the equation

δ = log

((
1− y0
y0

)b b+ 2y0 − 1

b− 2y0 + 1

)
. (12)

In addition, from (11) and (12), if y0 = m = 0.5, then δ = 0 for all values of b. Thus, we can study the

behavior of the mode by studying the function given in (12). For this purpose, we take the derivative
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of the right-hand side of (12) with respect to y0 to obtain the equation

∂δ

∂y0
=

b
(
b2 − 1

)
(y0 − 1)y0 {(b2 − 1) + 4y0 − 4y02}

. (13)

(11) is negative for b > 1, the situation where δ decreases as y0 (mode) increases (first

derivative test), then the mode lies in (0, 1/2) if δ > 0 (or m < 1/2) and for δ < 0 (or m > 1/2) the

mode is in (1/2, 0). If b < 1, (13) is positive whenever
{

(b2 − 1) + 4y0 − 4y20
}
> 0, that is, whenever

1−b
2 < y < 1+b

2 , the situation where δ increases as y increases. Thus, from (12) and (13) the minimum

of the pdf lies in (1−b2 , 1/2) for δ < 0 or m > 1/2, and in (1/2, 1+b2 ) for δ > 0 or m < 1/2.

3.3 Skewness and Kurtosis

First, we have the following symmetric property.

Property 3.7. The l-logistic density is symmetric when m = 0.5 whatever the value of b is.

For the case when the l-logistic density is asymmetric, the degree of skewness can be quantified

by some measures of skewness. Since the l-logistic distribution is related to the logistic distribution,

the skewness measure introduced by Arnold and Groeneveld (1995), and denoted by γM , seems to be

an appropriate skewness measure. The measure γM is based on the mode of distribution and is given

by

γM = 1− 2F (M), (14)

where M is the mode of the distribution and F (.) is the distribution function. The value of γM lies

in (−1, 1), and if γM is near 1, it indicates extreme right skewness. On the other hand, if γM is near

-1, it indicates extreme left skewness.

We also consider another measure of skewness called octile skewness (denoted here by γp),

first proposed by Hinkley (1975) and discussed further Brys et al. (2003). This skewness measure is

given by

γp =
Q(1− p) +Q(p)− 2m

Q(1− p)−Q(p)
, (15)

which is a function of high and low percentiles defined by p ∈ (0, 0.5) with Q(.) as in (3). The maximum

value of γp is 1, representing extreme right skewness, and the minimum is -1, representing extreme

left skewness. This measure is also zero for any symmetric distribution. However, the function in (15)

depends on the value of p. We can remove this dependence by integrating over p, (see Groeneveld

and Meeden, 1984), or to decide which value of p is appropriate for use. In Brys et al. (2003),

there is a comparison between several robust skewness measures in which accuracy, robustness, and

computational complexity are considered. The most interesting skewness measure of the measures
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investigated is octile skewness. Octile skewness takes p = 0.125 in (15), that is, it is given by

γ125 =
Q(0.875) +Q(0.125)− 2m

Q(0.875)−Q(0.125)
. (16)

For the l-logistic distribution, we mase use of this particular skewness measure instead of removing

the dependence over p thorough integration.

Moreover, the kurtosis of the l-logistic distribution can also be derived easily by using the

quantiles. The kurtosis measure introduced by Moors (1988) is given by

kQ =
Q(0.875)−Q(0.625)−Q(0.375) +Q(0.125)

Q(0.75)−Q(0.25)
, (17)

with kQ ∈ (0,∞).

Figure 3 presents the results of the measures of skewness and kurtosis described here for some

values of the location parameter m as a function of the shape parameter b, b > 1. In this figure, we

can see that the two measures of skewness become close as b increases, as intuition suggests. Moors

(1988) justified the use of the kurtosis measure in 17 by the interpretation that the two terms in the

numerator of (17) are large (small) if relatively little (much) probability mass is concentrated in the

neighborhood of Q(0.75) and Q(0.25). This corresponds to large (small) dispersion around (roughly)

EY [Y ]± V arY [Y ] where EY [Y ] and V arY [Y ] are the mean and variance of r.v. Y , respectively.
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Figure 3: The mode, skewness (γM and γ0.125) and kurtosis (kQ) of the l-logistic distribution for some

values of the parameters.

3.4 Moments

The following propositions gives an expression for the moments of the l-logistic distribution.
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Property 3.8. If Y ∼ LL (m, b), then the t-th moment of Y about zero is given by

E[Y t] =

∫ 1

0

[
1 +

(
1− v
v

)1/b(1−m
m

)]−t
dv. (18)

The integral in (18) cannot be expressed in an analytical form. However, we can use numerical

integration to evaluate some moments as EY (Y ), EY (Y 2) and V arY (Y ) = EY (Y 2)− EY (Y )2. Table

1 shows some values of the first and second moments and the variance of the l-logistic distribution. In

addition, Figure 4 shows the graphs of the mean and the variance as functions of the shape parameter

b, for some values of the location parameter m. For this purpose, the integral in (18) was evaluated

by the Gauss quadrature through the ‘statmod’ R package (Smyth et al., 2015).
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Figure 4: Descriptive measures of the l-logistic distributions for some values of the parameters

Table 1: EY [Y ], EY [Y 2], and V arY (X) of the l-logistic distribution for some values of b and m.

m 0.2 0.5 0.8 0.2 0.5 0.8

b 1 1 1 3 3 3

EY [Y ] 0.283 0.5 0.717 0.216 0.5 0.784

EY [Y 2] 0.145 0.333 0.579 0.056 0.269 0.625

V arY [Y ] 0.065 0.083 0.065 0.010 0.019 0.01

8



4 Bayesian inference

In this section, we describe the Bayesian approach for the estimation of the parameters of

the l-logistic model. If we consider a random sample Y = (Y1, ..., Yn) from the distribution in (2),

then the likelihood function is given by

L(θ|y) =

n∏
i=1

b(1−m)bmbyb−1i (1− yi)b−1[
(1−m)bybi +mb(1− yi)b

]2 . (19)

4.1 Prior specification

To complete the Bayesian specification of the model, since parameters m and b have different

behavior, we assume independence between them, and the following structure is then considered:

π(m, b) = π(m)π(b), (20)

where π(m) and π(b) are the prior densities for m and b, respectively.

Assuming that m ∼ unifom(0, 1), where uniform(0, 1) represents the uniform distribution

on the unit interval, and prior π(b) for the parameter b, the joint posterior distribution for (m, b) is

given by

π(m, b|y) ∝
∏
i=1

bn(1−m)bmbπ(b)[
(1−m)bybi +mb(1− yi)b

]2 . (21)

The prior π(b) can be, for example, the pdf of the gamma distribution with parameters vector (ε, ε),

ε a small value. Some priors for parameter b are compared and discussed in Section 7.

Since the posterior distribution is not available in a form closed, the Markov Chain Monte

Carlo (MCMC) approach (Gelman et al., 2013, pp. 259 – 349) is used to estimate the model parame-

ters. Initially, we consider the full conditional posterior distributions for the parameters (m, b) given

by

π(m|b,y) = K−1
1

(1−m)nbmnb∏n
i=1

[
(1−m)bybi +mb(1− yi)b

]2 (22)

π(b|m,y) = K−1
2

n∏
i=1

(
b(1−m)bmbyb−1

i (1− yi)b−1[
(1−m)bybi +mb(1− yi)b

]2
)
π(b) (23)

(24)

where K1 and K2 are normalizing constants.

Thus, a hybrid algorithm that combines Metropolis-Hastings and Gibbs sampling was im-

plemented in R language (R Development Core Team, 2015) to obtain a sample from the posterior

distribution of model parameters (m, b). These codes are available upon request. The model can also

be implemented easily in Bugs or other software such as Jags or R Stan (Lunn et al., 2000; Plummer,

2003; Guo, 2015).
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4.2 Model comparison criteria

In order to compare different models, we made use of some model comparison criteria. Specifi-

cally, we consider the Expected Akaike information criteria (EAIC), the expected Bayesian information

criteria (EBIC), the deviance information criteria (DIC), and the Watanabe-Akaike information cri-

teria (Watanabe, 2010, WAIC). For a review of these criteria, one may refer to Gelman et al. (2013).

The EAIC, EBIC and DIC can be estimated as

EAIC = D̄ + 2× p (25)

EBIC = D̄ + 10× log n (26)

DIC = D̄ + pD, (27)

where

D̄ = G−1
G∑
g=1

(
−2

n∑
i=1

log (f(yi|bg,mg))

)
,

D̂ = −2
n∑
i=1

log
(
f(yi|m̄, b̄

)
,

pD = D̄ − D̂, and p represents the number of model parameters. Here, the notation θ̄ means the

posterior mean of θ and θ(g) represents the gth parameters of vector θ of a sequence of size G generated

from the posterior distribution by MCMC method.

WAIC is a Bayesian approach for estimating the expected pointwise log predictive density

(elppd) for a new dataset, and is given by

elppd =
n∑
i=1

Ey [log (P (ỹ))] , (28)

where the expectancy Ey[.] and the pdf P (.) are related to the predictive distribution (pd) induced

by the posterior distribution P (m, b|y) and ỹ is a future data. To estimate the elppd, we start by

computing the pointwise log predictive density (lppd) as

lppd =

n∑
i=1

logP (yi)

=
n∑
i=1

log

∫
f(yi|m, b)dP (m, b|y)

≈
n∑
i=1

log

G−1 G∑
g=1

f(yi|mg, bg)

 = ˆlppd. (29)

Thus, we can use a factor of correction for the effective number of parameters to adjust for overfitting.

In the literature, there are two factors of correction that can be viewed as approximations to cross-

validation (Gelman et al., 2013, pp. 169-174). The factor of correction used here makes use of the

10



variance in each term of the log predictive density and it is used here to obtain the WAIC. This factor

is given by

pWAIC =

n∑
i=1

V ar(m,b)|y [log (f(yi|(m, b))]

≈
n∑
i=1

 1

G− 1

G∑
g=1

log (f(yi|mg, bg))−G−1
G∑
g=1

log (f(yi|mg, bg))

2 = p̂WAIC2 . (30)

Finally, we can compute the WAIC as an approximation to the elppd as

WAIC = ˆlppd− p̂WAIC . (31)

4.3 Posterior predictive checking

One point that will be of interest is the predictive distribution for a future observation. The

density estimation of the posterior predictive distribution is obtained by integrating the unconditional

predictive distribution P (ỹ|y) =
∫
P (ỹ|θ)dP (θ|y), where P (θ|y) is the density of the posterior dis-

tribution of the parameters of the assumed model. In practice, we will be interested in simulating

draws from the posterior predictive distribution of unknown observables ỹ. Thus, as discussed by

Gelman et al. (2013), the predictive distribution can be used to compare the predicted value under

the assumed model yrep with the actual data y, where yrep can be thought as an estimate of ỹ, or as

an attempt to replicate the observed data based on the parameters. If the model fits well, then this

predicted value should be similar to the observed data.

Using MCMC techniques, we could simulate values of the posterior predictive distribu-

tion by generating yrep from the distribution assumed by its model structure with the parameters

generated from the posterior distribution. Let us consider y1, ..., yn as observations generated inde-

pendently from the l-logistic distribution. Then, we can generate yrep from the l-logistic distribution

with appropriate parameters, that is,

y
rep,(s)
i ∼ LL(ms, bs),

s = 1, ..., S, where (m1, b1), ..., (mS , bS) is a sample generated from the posterior distribution. After

generating
(
y
rep,(s)
1 , ..., y

rep,(s)
n

)
, we order the sample to achieve

(
y
rep,(s)
(1) , ..., y

rep,(s)
(n)

)
, the ordered gen-

erated value. We can then compare the distribution of the ordered generated values y
rep,(s)
(i) with the

ordered observed values y(i). Finally, error bar can be constructed or posterior predictive values can

be obtained by making use of the discrepancy measure, allowing for an evaluation of the model fit.

Details about the predictive model checking are discussed by Gelman et al. (2013), Ntzoufras (2011),

and Berkhof et al. (2000).
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5 Simulation studies

This section is devoted two simulation studies, one that examines a prior sensitivity analysis

and another investigates the recovery of the parameters of the model by the proposed estimation

method. For this purpose, the Bayesian method is applied on simulated data sets from the l-logistic

distribution, considering different scenarios. For the estimation of parameters, we generated 20, 000

samples from the posterior distribution given in (21), then the first 10, 000 samples were discarded

and sequences of 10 observations were eliminated, and finally the resulting samples of size 1, 000 were

used for inference.

5.1 Prior sensitivity analysis

Prior sensitivity analysis plays an important role in applied Bayesian analyses. This is es-

pecially true for Bayesian models used for new distribution, where the interpretability of the corre-

sponding parameters becomes important. In this section, we consider a simulation study to evaluate

the sensitivity of different choices of prior distributions for parameter b since this is different from pa-

rameter m, which is clearer in its interpretation. Specifically, we assume prior independence between

parameter b and m, considering a unit uniform distribution for parameter m.

The models estimated with different prior distributions were compared by using WAIC, EAIC,

EBIC and DIC. We considered five different prior distributions for parameter b, considering simulated

data sets from the l-logistic distribution for some pairs of parameters m and b. The values for the

parameters m and b used are as follows: b ∈ {0.5, 1, 5} and m ∈ {0.2, 0.5, 0.9}, leading to nine pairs of

parameters. We simulated samples of size n = 100, y1, ...yn, from the l-logistic distribution considering

these pairs of parameters, then nine distinct simulated datasets were considered for the analysis.

Based on the works of Gelman (2006) and Figueroa-Zúñiga et al. (2013), we consider for the

parameter b three non-informative and two informative prior distributions. The non-informative prior

distributions are the gamma distribution with parameters vector (0.001, 0.001) (b ∼ Gamma(0.001, 0.001)),

denoted by prior A, the uniform distribution with parameters vector (1, 100) for U (U ∼ Uniform(0, 100))

with b = U2, denoted by prior B, and the central Student t distribution with parameters vector

(10, 0, 2) (L ∼ St(0, 100)) for L with log(b) = L, denoted by prior C. The prior B is chosen as it is less

informative than the usual gamma with parameter vector (ε, ε). For the informative prior distributions,

we consider b ∼ Gamma(2.5, 1), denoted by prior D, and b ∼ Gamma(50, 1), denoted by prior E. Note

that prior E provides incorrect information about

parameter b, while prior D provides almost correct information. For all the cases, the prior dis-

tribution for parameter m is the uniform distribution with parameters 0 and 1, (m ∼ Uniform(0, 1)).

Table 2 shows the values of WAIC, EAIC, EBIC, and DIC for the fitted models. For all
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the simulated datasets, we found that with prior E the estimated model achieves the worst fit among

all models fitted for the same dataset. However, for the models using all other prior distributions,

the values of WAIC, EAIC, EBIC, and DIC are quite close, showing no significant difference, giving

evidence that the estimated models provide almost the same quality of fit for the analyzed samples.

Thus, for these cases, the posterior distribution does not seen to be sensitive with respect to the

specification of these prior distributions.

Additionally, we chose two non-informative priors A and C and the worst informative prior

E. The prior A was chosen for this analysis was it is the simplest among the non-informative priors

considered, while prior C is chosen as it is less informative than A. Table 3 reports the posterior mean

and the 95% HPD interval (obtained by the package of Martin et al. (2011)). We observe that when

the prior is E, the posterior mean is not far from the true value of b, showing that the data still

dominates the prior information for these data. However, for some cases, the HPD interval does not

contain the true value of b.

Table 2: Statistics for model comparison, prior distributions for parameter b and the true value of

the parameters of the l-logistic distribution used to simulate the data sets.

Parameter Prior Criteria

(m, b) WAIC EAIC EBIC DIC

(0.2, 0.5)

A, b ∼ Gamma(0.001, 0.001) 41.761 -77.482 10.622 -82.685

B, b = U2, U ∼ Uniform(0, 100) 41.763 -77.483 10.620 -82.688

C, log(b) = L, L ∼ St(10, 0, 2) 41.782 -77.516 10.587 -82.754

D, b ∼ Gamma(2.5, 1) 41.793 -77.464 10.639 -82.650

E, b ∼ Gamma(50, 1) 35.833 -64.595 23.508 -56.912

(0.2, 1)

A, b ∼ Gamma(0.001, 0.001) 31.945 -58.058 30.045 -63.480

B, b = U2, U ∼ Uniform(0, 100) 31.959 -57.995 30.109 -63.353

C, log(b) = L, L ∼ St(10, 2) 31.971 -58.066 30.038 -63.496

D, b ∼ Gamma(2.5, 1) 31.971 -58.026 30.077 -63.416

E, b ∼ Gamma(50, 1) 26.129 -45.275 42.829 -37.914

(0.2, 5)

A, b ∼ Gamma(0.001, 0.001) 160.483 -314.935 -226.831 -320.145

B, b = U2, U ∼ Uniform(0, 100) 160.482 -315.031 -226.927 -320.336

C, log(b) = L, L ∼ St(10, 2) 160.493 -315.006 -226.903 -320.288

D, b ∼ Gamma(2.5, 1) 160.369 -314.847 -226.743 -319.969

E, b ∼ Gamma(50, 1) 156.062 -305.213 -217.110 -300.702

(0.5, 0.5)

A, b ∼ G(0.001, 0.001) 25.885 -45.841 42.263 -51.163

B, b = U2, U ∼ Uniform(0, 100) 25.904 -45.847 42.256 -51.176

C, log(b) = L, L ∼ St(10, 2) 25.921 -45.844 42.259 -51.170

D, b ∼ Gamma(2.5, 1) 25.915 -45.862 42.242 -51.205

E, b ∼ Gamma(50, 1) 19.934 -32.760 55.344 -25.001

. . .
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Table 2 – Continued

Parameter Prior Criteria

(m, b) WAIC EAIC EBIC DIC

(0.5, 1)

A, b ∼ Gamma(0.001, 0.001) 1.634 2.633 90.736 -2.734

B, b = U2, U ∼ Uniform(0, 100) 1.647 2.665 90.768 -2.670

C, log(b) = L, L ∼ St(10, 2) 1.664 2.623 90.726 -2.754

D, b ∼ Gamma(2.5, 1) 1.658 2.628 90.732 -2.744

E, b ∼ Gamma(50, 1) -4.103 15.133 103.236 22.266

(0.5, 5)

A, b ∼ Gamma(0.001, 0.001) 117.115 -228.297 -140.194 -233.624

B, b = U2, U ∼ Uniform(0, 100) 117.121 -228.277 -140.174 -233.583

C, log(b) = L, L ∼ St(10, 2) 117.126 -228.282 -140.179 -233.594

D, b ∼ Gamma(2.5, 1) 116.994 -228.085 -139.982 -233.199

E, b ∼ Gamma(50, 1) 112.630 -218.350 -130.247 -213.730

(0.9, 0.5)

A, b ∼ Gamma(0.001, 0.001) 91.031 -176.006 -87.903 -181.160

B, b = U2, U ∼ Uniform(0, 100) 91.051 -176.081 -87.977 -181.309

C, log(b) = L, L ∼ St(10, 2) 91.069 -176.135 -88.031 -181.418

D, b ∼ Gamma(2.5, 1) 91.059 -176.039 -87.936 -181.227

E, b ∼ Gamma(50, 1) 84.975 -162.958 -74.854 -155.064

(0.9, 1)

A, b ∼ Gamma(0.001, 0.001) 84.183 -162.356 -74.253 -167.553

B, b = U2, U ∼ Uniform(0, 100) 84.195 -162.383 -74.280 -167.608

C, log(b) = L, L ∼ St(10, 2) 84.240 -162.419 -74.316 -167.680

D, b ∼ Gamma(2.5, 1) 84.202 -162.330 -74.227 -167.501

E, b ∼ Gamma(50, 1) 78.539 -150.041 -61.938 -142.923

(0.9, 5)

A, b ∼ Gamma(0.001, 0.001) 9 218.348 -430.817 -342.714 -436.198

B, b = U2, U ∼ Uniform(0, 100) 218.364 -430.837 -342.734 -436.239

C, log(b) = L, L ∼ St(10, 2) 218.362 -430.666 -342.563 -435.897

D, b ∼ Gamma(2.5, 1) 218.246 -430.697 -342.594 -435.958

E, b ∼ Gamma(50, 1) 213.936 -421.048 -332.945 -416.660
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Table 3: Posterior mean with 95% HPD interval, prior distributions for parameter b and true values

of the parameters of l-logistic distribution used to simulate the data sets.

Real Prior A Prior C Prior E

Value Mean HPD (95%) Mean HPD (95%) Mean HPD (95%)

m = 0.20 0.24 (0.14, 0.35) 0.24 (0.14, 0.35) 0.24 (0.16, 0.33)

b = 0.50 0.58 (0.49, 0.67) 0.59 (0.50, 0.68) 0.78 (0.68, 0.90)

m = 0.20 0.21 (0.17, 0.26) 0.21 (0.17, 0.26) 0.22 (0.18, 0.26)

b = 1.00 1.15 (0.98, 1.34) 1.17 (0.98, 1.35) 1.55 (1.34, 1.77)

m = 0.20 0.20 (0.19, 0.21) 0.20 (0.19, 0.21) 0.20 (0.19, 0.21)

b = 5.00 5.77 (4.89, 6.76) 5.77 (4.83, 6.77) 7.51 (6.49, 8.55)

m = 0.50 0.54 (0.40, 0.68) 0.54 (0.39, 0.68) 0.54 (0.43, 0.66)

b = 0.50 0.58 (0.48, 0.67) 0.59 (0.49, 0.68) 0.78 (0.67, 0.88)

m = 0.50 0.52 (0.44, 0.58) 0.52 (0.45, 0.59) 0.52 (0.47, 0.58)

b = 1.00 1.16 (0.97, 1.33) 1.17 (0.98, 1.36) 1.55 (1.33, 1.76)

m = 0.50 0.50 (0.49, 0.52) 0.50 (0.49, 0.52) 0.50 (0.49, 0.52)

b = 5.00 5.78 (4.79, 6.77) 5.79 (4.83, 6.68) 7.52 (6.51, 8.68)

m = 0.90 0.90 (0.85, 0.95) 0.90 (0.86, 0.95) 0.91 (0.87, 0.94)

b = 0.50 0.58 (0.49, 0.68) 0.59 (0.49, 0.69) 0.78 (0.68, 0.89)

m = 0.90 0.90 (0.88, 0.93) 0.90 (0.88, 0.93) 0.91 (0.89, 0.93)

b = 1.00 1.15 (0.98, 1.34) 1.17 (0.98, 1.36) 1.55 (1.34, 1.77)

m = 0.90 0.90 (0.90, 0.91) 0.90 (0.90, 0.91) 0.90 (0.90, 0.91)

b = 5.00 5.78 (4.96, 6.78) 5.79 (4.80, 6.72) 7.51 (6.60, 8.76)

5.2 Parameter recovery

We carried out an evaluation of the point estimation, based on the
√
MSE and bias, for

simulated data sets from the l-logistic distribution. The mean and variance of an estimator θ̂ can be

computed by Monte Carlo simulation, and it can be made done using the approximations

Eθ̂

[
θ̂
]
≈G−1

G∑
g=1

θ̂g, (32)

V arθ̂[θ̂] ≈G
−1

G∑
g=1

(
θ̂g − Eθ̂

[
θ̂
])2

, (33)

where θ̂1, ..., θ̂G are obtained from G different simulated samples. Thus, the MSE of θ̂ is the function

of θ defined by

Eθ̂

[
(θ̂ − θ)2

]
= V arθ̂[θ̂] +

(
Eθ̂[θ̂]− θ

)2
≈ G−1

G∑
g=1

(
θ̂g − θ

)2
, (34)
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where E[θ̂]− θ is the bias of θ̂. Of course, a good estimator should produce mean, standard deviation

(square root of variance), and bias close to zero.

For the analysis presented here, we generated samples of size n = 50, n = 100, and n = 500,

the values of the parameters were set as m ∈ {0.2, 0.5, 0.9} and b ∈ {0.3, 0.5, 1, 2, 4}. For these data

sets, we estimated the parameters of the l-logistic model by using the Bayesian method under the

assumption of independent priors for m and b with non-informative prior distributions uniform and

gamma for m and b, respectively, that is,

m ∼ Uniform(0, 1) and b ∼ Gamma(0.001, 0.001). (35)

Gamma distribution is commonly used in the literature for shape parameters (specifically for precision

parameters) and, based on the analysis presented in Subsection 5.1, the posterior distribution is not

sensitive with respect to the specification of this prior distribution.

Bayes estimator used here is that the mean of the posterior distribution (estimator with

respect to squared error loss function).

Table 4 shows the values of the
√
MSE and bias from the simulated data sets. The estimates

for these quantities were obtained by G = 1, 000 Monte Carlo replications. We can see that the
√
MSE and bias are close to zero even when the the sample size is n = 50. For these samples, the

estimator performs very well as both
√
MSE and bias are very small, for all the analyzed samples.
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Table 4: Bias and square root of mean square error (
√
MSE) of the Bayesian estimator of the

parameters m and b.

Real value m=0.2 m=0.5 m=0.9

n parameter Bias
√
MSE Bias

√
MSE Bias

√
MSE

b=0.3

50
m -1,5e-02 1,5e-02 -1,7e-01 1,7e-01 -2,2e-01 2,2e-01

b 1,9e-02 1,9e-02 1,9e-02 1,9e-02 1,8e-02 1,8e-02

100
m -5,3e-02 5,3e-02 -2,4e-01 2,4e-01 -2,8e-01 2,8e-01

b -7,0e-03 7,0e-03 -7,1e-03 7,1e-03 -5,6e-03 5,6e-03

500
m -1,8e-02 1,8e-02 -9,8e-02 9,8e-02 -1,0e-01 1,0e-01

b -1,2e-02 1,2e-02 -1,1e-02 1,1e-02 -1,1e-02 1,1e-02

b=0.5

50
m -2,4e-02 2,4e-02 -1,3e-01 1,3e-01 -1,3e-01 1,3e-01

b 2,8e-02 2,8e-02 3,2e-02 3,2e-02 3,2e-02 3,2e-02

100
m -4,3e-02 4,3e-02 -1,7e-01 1,7e-01 -1,6e-01 1,6e-01

b -8,8e-03 8,8e-03 -9,5e-03 9,5e-03 -8,1e-03 8,1e-03

500
m -1,6e-02 1,6e-02 -6,1e-02 6,1e-02 -5,5e-02 5,5e-02

b -1,9e-02 1,9e-02 -1,8e-02 1,8e-02 -1,9e-02 1,9e-02

b=1

50
m -1,9e-02 1,9e-02 -7,1e-02 7,1e-02 -6,0e-02 6,0e-02

b 5,7e-02 5,7e-02 5,6e-02 5,6e-02 5,2e-02 5,2e-02

100
m - -2,7e-02 2,7e-02 -9,3e-02 9,3e-02 -7,3e-02 7,3e-02

b -1,7e-02 1,7e-02 -1,6e-02 1,6e-02 -2,2e-02 2,2e-02

500
m -9,9e-03 9,9e-03 -3,3e-02 3,3e-02 -2,4e-02 2,4e-02

b -3,4e-02 3,4e-02 -3,5e-02 3,5e-02 -3,5e-02 3,5e-02

b=2

50
m -1,2e-02 1,2e-02 -3,7e-02 3,7e-02 -2,7e-02 2,7e-02

b 1,2e-01 1,2e-01 1,2e-01 1,2e-01 1,3e-01 1,3e-01

100
m -1,5e-02 1,5e-02 -4,9e-02 4,9e-02 -3,3e-02 3,3e-02

b -3,4e-02 3,4e-02 -4,3e-02 4,3e-02 -3,4e-02 3,4e-02

500
m -6,5e-03 6,5e-03 -1,7e-02 1,7e-02 -1,1e-02 1,1e-02

b -7,2e-02 7,2e-02 -6,9e-02 6,9e-02 -7,2e-02 7,2e-02

b=4

50
m -7,2e-03 7,2e-03 -1,8e-02 1,8e-02 -1,2e-02 1,2e-02

b 2,6e-01 2,6e-01 2,4e-01 2,4e-01 2,6e-01 2,6e-01

100
m -8,7e-03 8,7e-03 -2,4e-02 2,4e-02 -1,6e-02 1,6e-02

b -7,0e-02 7,0e-02 -6,9e-02 6,9e-02 -6,2e-02 6,2e-02

500
m -2,7e-03 2,7e-03 -7,6e-03 7,6e-03 -4,9e-03 4,9e-03

b -1,6e-01 1,6e-01 -1,4e-01 1,4e-01 -1,4e-01 1,4e-01

6 Applications to real data

In order to illustrate the proposed methodology, we consider data from municipalities of the

state of Alagoas in Brazil, collected in 2010. The state of Alagoas is located in the eastern part

of the Northeast Region of Brazil and is made up of 102 municipalities. This state is one of the

poorest states of Brazil and its HDI (Human Development Index) is the country’s worst, based on
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information available in Fundação (2010). Specifically, we are interested in modeling the proportion of

children vulnerable to poverty (PPOBC) and the Gini index in the municipalities of Alagoas; see also

Fundação (2010). In the case of the Gini index, we model this data as a function of the percentage

people employed in the manufacturing industry (EMP) in the municipalities of the Alagoas.

6.1 Aplication to PPOBC data

In this subsection, we consider the PPOBC data set, which contains the proportion of children

(0-14 years olds) vulnerable to poverty in each municipality of Alagoas. Here, a child is considered

vulnerable to poverty if the per capita household income is equal to or less than BRL 255, in 2010.

The PPOBC data set comprises 102 observations and is modeled here using the l-logistic model and

the beta model that is frequently used to model data when a distribution over some finite interval

is needed; see Gupta and Nadarajah (2004). Here, we use the re-parameterized beta distribution

discussed by Ferrari and Cribari-Neto (2004) in the context of regression analysis.

The Bayesian methodology was used to estimate the parameters of both models. For the

l-logistic distribution with parameters m and b, we considered the gamma prior distribution for param-

eter b (b ∼ Gamma(0.001, 0.001)) and the uniform prior distribution in the unit interval for parameter

m (m ∼ Uniform(0, 1)). For the beta distribution with parameters 0 < µ < 1 and φ > 0, we consid-

ered the same prior distributions considered in the l-logistic case, that is, φ ∼ Gamma(0.001, 0.001)

and µ ∼ Uniform(0, 1). These priors distributions were chosen based on the discussion in Section 2.

In the case of beta distribution, we used the non-informative proper prior distribution commonly used

in the literature for the parameters of precision.

Table 5: Estimates and 95% HPD intervals for the parameters of the l-logistic and beta models and

the Bayesian information criteria values for these models

Model
Criteria

Parameter WAIC EAIC EBIC DIC

L-logistic
m 0.86(0.85, 0.87)

155.1322 -304.2996 -299.0496 -306.3422
b 4.04(3.42, 4.72)

Beta
µ 0.85(0.84, 0.86)

150.8993 -295.3312 -290.0813 -297.3437
φ 37.81(27.55, 47.83)

The final result of the estimation is presented in Table 5. This table also shows the Bayesian

information criteria of model comparison in order to evaluate the ability of l-logistic and beta models

to fit the data. According to this table, it is clear that the l-logistic model is better for modeling the

PPOBC data than the beta model. In addition, Figure 5 shows two graphs with the mean values and

error bars with 95% credibility intervals plotted against the corresponding observed value of the data.
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The errors bars were constructed from 1000 samples (ordered, and of size 102) generated from the

l-logistic and beta distributions, respectively for each graph, with the estimated parameters. In the

case of the l-logistic model, the bars crossed by the diagonal line y = x indicate that the model is quite

suitable for the data. On the other hand, in the case of the beta model, we observe high deviations

between the predicted and observed data, mainly in the tail of the distribution. In this case, an

observation is flagged as an outlier, since the corresponding posterior interval does not contain these

values that are situated between 0 and 0.6. Thus, Figure 5 provides evidence that the beta model is

unsuitable for these data. Finally, the estimated and the observed histogram of the PPOBC data are

presented in Figure 6.1, which confirms that the l-logistic model provides a better fit for these data

than the beta model.
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Figure 5: Posterior predictive error bars with 95% confidence intervals of the generated values yrep(i)

versus ordered observed data y(i) for the PPOBC data, using l-logistic and beta models.

Figure 6: Estimated density of PPOBC data.
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6.2 Regression Analysis with l-logistic model

Regression analysis estimates the potential differential effect of a covariate on mean or quan-

tiles in the conditional distribution (Hao and Naiman, 2007). Here, we are interested in studying the

conditional (or regression) median as a function of the covariates, when the response variable takes

values in a bounded interval. In the analysis with the l-logistic distribution, we assume that con-

ditional on the explanatory variables (covariates), the random variable Yi, i = 1, ..., n, are mutually

independent with l-logistic distribution, Yi ∼ LL(mi, bi). Thus, given xT1i and xT2i (q and d-dimensional

vectors, respectively, containing the explanatory variables both with 1 as in the first component), the

likelihood of the observed sample y = (y1, .., yn) can be written as

L(β, δ|y,X =

n∏
i=1

bi(1−mi)
bimbi

i y
bi−1
i (1− yi)bi−1[

(1−mi)biybi +mbi(1− yi)bi
]2 , (36)

where X is the matrix containing all the explanatory variables, and

logit(mi) = xT1iβ and log(b2i ) = xT2iδ. (37)

In (37), β = (β0, ..., βq−1) and δ = (δ0, ..., δd−1) represent, respectively, the q and d-dimensional

vectors of unknown regression parameters, logit(.) is the logit function, and log(.) is the natural

logarithm function.

In addition, we adopt the following proper prior distributions with large range as is frequently

considered in the literature:

βj ∼ Normal(0, 100), for j = 0, .., q − 1,

δl ∼ Normal(0, 100), for l = 0, .., d− 1.
(38)

Thus, samples of the joint posterior distribution of β and δ can be obtained by considering the

MCMC method to simulate from the posterior distribution, with pdf given by

π(β, δ|y) ∝ L(β, δ|y,x)π(β)π(δ). (39)

6.2.1 Modeling Gini index in Brazil

In this subsection, we consider the Gini index data of the municipalities of the state of

Alagoas in Brazil. The Gini index is used to measure how evenly income is distributed throughout

a country. For more details, one may refer to Lambert and Aronson (1993). In Brazil, the Gini

index of the municipalities is elaborated by IBGE ( Portuguese, Instituto Brasileiro de Geografia e

Estat́ıstica); see IBGE (2010). Since Alagoas comprises 102 municipalities, our sample is composed

of 102 observations (n = 102). The scatterplot of the Gini index data versus EMP data and the

histograms of these data are presented in Figure 8.
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Figure 7: Scatterplot and histograms of the real data.

Considering the l-logistic model, we still consider four models with the following specification,

for i = 1, ..., n:

Yi ∼ LL(mi, bi) =⇒



M0 : logit(mi) = β0 and log(b2i ) = δ

M1 : logit(mi) = β0 and log(b2i ) = xT1iδ

M2 : logit(mi) = xT1iβ and log(b2i ) = δ0

M3 : logit(mi) = xT1iβ and log(b2i ) = xT2iδ.

In addition, we consider the models M0,M1,M2 and M3 for the case where the response

follows the re-parameterized beta distribution, that is, for i = 1, .., n,:

Yi ∼ Beta(µi, φi) =⇒



M0 : logit(µi) = β0 and log(φ2i ) = δ

M1 : logit(µi) = β0 and log(φ2i ) = xT1iδ

M2 : logit(µi) = xT1iβ and log(b2i ) = δ0

M3 : logit(µi) = xT1iβ and log(φ2i ) = xT2iδ,

where φi is a parameter of precision.

For both, beta and l-logistic models, the Bayesian approach is considered for the inference

process with prior distribution for the unknown regression parameters as given in (6.2). All the

algorithms were prepared in R language and we report the results corresponding to 10, 000 iterations

following a burn-in period also of 10, 000 iterations. In order to eliminate dependence, we eliminated

a sequence of 10 observations every 11 simulations in the sample of size 10, 000, resulting in a final

sample of 1, 000 elements. Finally, the convergence of MCMC chain was assessed by using the separated

partial means test of Geweke (1992), which provided evidence for the chains to have converged.
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Table 6 shows the estimated parameters for the l-logistic and beta cases for all the models.

This table also shows the 95% HPD intervals for all the coefficients, where we can see that the

amplitude of the intervals are considered small. Additionally, since the HPD intervals for β1 and δ1

do not contain zero, we can conclude that the EPM covariate is significant to explain the Gini index

in both the l-logistic and beta models.

Table 6: Parameter estimates and 95% HPD intervals for the l-logistic and beta models.

Model
Coefficient

β0 β1 δ0 δ1

L-logistic

M3 0.13(0.090, 0.164) -0.48(-0.620,-0.305) 4.59(4.243, 4.920) 3.71(1.170, 6.038)

M2 0.13(0.098, 0.167) -0.56(-0.781, -0.347) 4.50(4.144, 4.801) -

M1 0.11(0.050, 0.161) - 4.28(3.985, 4.630) 1.42(-1.225, 4.316)

M0 0.13(0.078, 0.162) - 4.27(3.956, 4.604) -

Beta

M3 0.13(0.101, 0.175) -0.49(-0.652, -0.339) 9.66(9.109, 10.216) 6.88(3.068, 10.681)

M2 0.14(0.102, 0.176) -0.56(-0.792, -0.330) 9.47(8.902, 9.979) -

M1 0.12(0.065, 0.167) - 9.14(8.576, 9.665) 2.59(-1.897, 6.550)

M0 0.14(0.04, 0.176) - 9.10(8.571, 9.670) -

In addition, in both cases, the models M0,M1,M2 and M3 were compared by the use of

EAIC, EBIC, DIC and WAIC criteria described earlier. Results are presented in Table 7, in which

we can see that the model M3 is the best for both distributions. Note that values of coefficients

β0 and β1 are similar for both models and that values of δ0 and δ1 are different. Thus, there is no

significant difference between the models for both distributions. Therefore, based on the obtained

results, both models explain equally the phenomenon considered here. So, we can choose either of the

two distributions in this case.

Table 7: Model comparison criteria for model comparison.

L-logistic model Beta model

Sub-model WAIC EAIC EBIC DIC WAIC EAIC EBIC DIC

M3 175.22 -339.09 -328.59 -343.29 175.07 -338.24 -327.74 -342.26

M2 170.22 -331.99 -324.12 -335.15 169.73 -330.74 -322.87 -333.67

M1 159.62 -310.10 -302.22 -313.25 160.61 -312.29 -304.41 -315.33

M0 158.82 -311.87 -306.62 -313.96 159.89 -313.96 -308.71 -316.06

Finally, for the l-logistic and beta models M3 , we performed a predictive check based on the

ordered data y(i) and generated values yrep(i) of the posterior predictive distribution, as mentioned in

Subsection 4.3. Error bars of the yrep(i) against the correspondent observed data are presented in Figure

8, in which we can see that the diagonal line y = x crosses the error bars for all observations for both
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distributions. Thus, both models seem to fit the data well in this case. Figure 8 also presents the

realized residual versus adjusted values ( ŷi, i = 1, .., n ). The realized residual (ri = yi − ŷi) is based

on a posterior draw of the parameters rather than point estimations, for more details, see for example,

(Gelman et al., 2013). Based on Figure 8, we can see that the spread of the residuals is quite very

similar for the beta and the l-logistic models.
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Figure 8: Posterior predictive error bars of generated values yrep(i) versus ordered observed data y(i)

and realized residual versus adjusted values for the model l-logistic M3 and beta model M3 for the

Gini index data.

7 Final remarks

The l-logistic distribution is a bounded continuous distribution that possesses some proper-

ties, as discussed in Section 3. In the Bayesian context, a non-informative prior distribution can be

adopted for the location parameter m since it lies in the unit interval, enabling the use of unit uniform

distribution as a non-informative prior distribution. Two simulation studies are presented in Section

6 for evaluating the posterior distribution with respect to the specification of the prior distribution
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for the shape parameter b and to evaluate the performance of the Bayesian estimator chosen. In

the first study, for the studied cases, we observe that the non-informative prior distributions provide

correct information about parameter b, based on the results of WAIC, EAIC, EBIC, and DIC. Thus,

the posterior distribution is not sensitive with respect to the specification of these prior distributions.

Some characteristics of the posterior distribution are also calculated where two non-informative and

one informative prior distributions for the parameter b are considered. In this study, we observe that

the prior information is dominated by the sample information. In the second study, we evaluate the

estimates of the parameters of the l-logistic distribution obtained by using Bayesian method upon

considering the prior gamma distribution with parameters vector (0.001, 0.001). We observe that the
√
MSE and bias lie always close to zero even when the sample size is small. Hence, for the samples

analyzed, the estimator seems to provide reasonable estimates.

In addition, we introduce the l-logistic distribution in the context of conditional median

regression models. Conditional median regression is a special case of quantile regression in which the

conditional 0.5th quantile is modeled as a function of covariates. An advantage of this approach is the

possibility of modeling other quantiles in order to describe a non-central position of a distribution.

So, one may choose a position a specific for his needs

inquiries. For example, poverty studies concern the low-income population and tax-policy

studies concern the rich people. Conditional quantile models offer the flexibility to focus on these

population segments, whereas conditional mean models do not. Thus, multiple quantiles can be

modeled. However, since quantile regression curves are estimated individually, the quantile curves can

cross, leading to an invalid distribution for the response. Thus, this problem, referred to as crossing in

the literature, needs to be studied carefully. Some authors have proposed methods to deal with this

problem, see, for example, Cai and Jiang (2015).

Finally, for the future, we aim to develop techniques for mixed quantile regression for the

l-logistic distribution. Moreover, we intend to explore mixtures of L-logistic distributions in a Bayesian

framework as well as a multivariate version of this distribution.
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A Appendix

If Z = b log
(
Y (1−m)
m(1−Y )

)
and Y ∼ LL (m, b), then the pdf of Z can be obtained by using the

transformation technique as

fZ(z) = fY

((
1 + e−z/b

(
1−m
m

))−1) ∣∣∣∣∂(1+e−z/b( 1−m
m ))

−1

∂z

∣∣∣∣
=

b(1−m)bmb
(

1

1+( 1−mm )e−z/b

)b−1(
( 1−mm )e−z/b

1+( 1−mm )e−z/b

)b−1

[
(1−m)b

(
1

1+( 1−mm )e−z/b

)b
+mb

(
( 1−mm )e−z/b

1+( 1−mm )e−z/b

)b]2
(

( 1−m
m

)e−z/b

b[1+( 1−m
m

)e−z/b]
2

)

=
(1−m)bmb(( 1−mm )e−z/b)

b−1

[(1−m)b+mb( 1−m
m

)be−z]
2

(
(1−m

m
)e−z/b

)
= (1−m)bmb(1−m)b−1e−z(b−1)/b

mb−1[(1−m)b+(1−m)be−z]
2 (1−m

m
)e−z/b = e−z

[1+e−z ]2

(40)

⇒ fZ(z) =
ez

[1 + ez]2
IR(z), (41)

that is, Z has the standard logistic distribution.

Using the transformation technique, as in (40), we can achieve the pdf and cdf of the dis-

tribution of Z
′

= δ + b log
(

Y
1−Y

)
with Y ∼ LL (δ, b) as the pdf and cdf of the standard logistic

distribution.

Since m = e−
δ
b

1+e−
δ
b

with δ > 0, and Y ∼ LL (m, b), we can replace the parameter m = e−
δ
b

1+e−
δ
b

in (1) and (2) to obtain

f(y|δ, b) =
b

(
1− e

− δ
b

1+e
− δ
b

)b(
e
− δ
b

1+e
− δ
b

)b
yb−1(1−y)b−1

(1− e
− δ
b

1+e
− δ
b

)b
yb+

(
e
− δ
b

1+e
− δ
b

)b
(1−y)b

2

=
b

(
1

1+e
− δ
b

)b(
e
− δ
b

1+e
− δ
b

)b
yb−1(1−y)b−1

( 1

1+e
− δ
b

)b
yb+

(
e
− δ
b

1+e
− δ
b

)b
(1−y)b

2

= be−δyb−1(1−y)b−1

[yb+e−δ(1−y)b]
2 = beδyb−1(1−y)b−1

[ybeδ+(1−y)b]
2

(42)

and

FY (y|δ, b) =

1 +

 e
− δ
b

1+e
− δ
b

(1−y)

y( 1

1+e
− δ
b

)


b

−1

=

(
1 +

(
e−

δ
b (1−y)
y

)b)−1
=

(
1 + e−δ

(
1−y
y

)b)−1
which are the pdf and cdf of the l-logistic distribution with parameters δ and b.
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Assuming µ = 1

1+( m
1−m)

b with Y ∼ LL (m, b), as in (42), by replacing parameter m =

1

1+
(

µ
1−µ

)1/b in (1) and (2), we obtain the corresponding pdf and cdf as

f(y|µ, b) =
bµ(1− µ)yb−1(1− y)b−1

[ybµ+ (1− y)b(1− µ)]
2 , 0 < y < 1, (43)

and

FY (y|µ, b) =

(
1 +

(
1− µ
µ

)(
1− y
y

)b)−1
, 0 < y < 1, (44)

with µ ∈ (0, 1) and b > 0.

If Y = X(d − c) + c with c, d ∈ R and X ∼ LL (m, b), then Y ∈ (c, d). In this case, we can

obtain the pdf of Y by transformation technique as

f(y|m, b, c, d) =
(d− c)b(1−m)bmb(y − c)b−1(d− y)b−1

[(1−m)b(y − c)b +mb(d− y)b]
2 . (45)

Thus, Y has the l-logistic distribution with support on (c, d), c, d ∈ R.

Assuming that Y ∼ LL (m, b), then the t-th moment of the random variable Y about zero

can be obtained from (1) and (41) as

E[Y t] =
∫ 1
0 y

t b(1−m)bmbyb−1(1−y)b−1

[(1−m)byb+mb(1−y)b]
2 dy

=
∫∞
−∞

(
1

1+( 1−m
m )e−

z
b

)t
ez

[1+ez ]2
dz.

Let v = ez

1+ez ⇒ z = log
(

v
1−v

)
and dv = ez

(1+ez)2
dz. Then, E[Y t] =

∫ 1
0

[
1 +

(
1−v
v

)1/b (1−m
m

)]−t
dv.

In order to find the mode of the l-logistic distribution, we can obtain the derivative of the

f(y|m, b), given in (1), relative to y as

∂f

∂y
=
b((1−m)m)b((1− y)y)−2+b

{
mb(1− y)b(−1 + b+ 2y)− (1−m)b(1 + b− 2y)yb

}
(mb(1− y)b + (1−m)byb)3

. (46)

Thus, ∂f
∂y (y0) = 0 ⇔

{
mb(1− y)b(−1 + b+ 2y)− (1−m)b(1 + b− 2y)yb

}
= 0. Therefore, the mode

y0 is a solution of the equation (
1−m
m

)b
=

(
1− y0
y0

)b b+ 2y0 − 1

b− 2y0 + 1
, (47)

when b > 1. For b 6 1, the curve is convex and does not have mode.

To show that the density of l-logistic distribution is symmetric when m = 0.5 whatever the

value of b is, let f(y) be the pdf of the l-logistic distribution with parameters b and m = 0.5:

f(m− y) = b(1−m)bmb(m−y)b−1(1−m+y)b−1

[(1−m)b(m−y)b+mb(1−m+y)b]
2

= m2b

m2b
b(m−y)b−1(m+y)b−1

[(m−y)b+(m+y)b]
2

= b(m2−y2)b−1

[(m−y)b+(m+y)b]
2

= f(m+ y).

26



References

Arnold, B. C. and R. A. Groeneveld (1995). Measuring skewness with respect to the mode. The

American Statistician 49 (1), 34–38.

Berkhof, J., I. van Mechelen, and H. Hoijtink (2000). Posterior predictive checks: Principles and

discussion. Computational Statistics 15 (3), 337–354.

Brys, G., M. Hubert, and A. Struyf (2003). A comparison of some new measures of skewness. In

R. Dutter, P. Filzmoser, U. Gather, and P. J. Rousseeuw (Eds.), Developments in Robust Statistics,

pp. 98–113. Springer-Verlag.

Cai, Y. and T. Jiang (2015). Estimation of non-crossing quantile regression curves. Australian and

New Zealand Journal of Statistics 57 (1), 139–162.

Ferrari, S. and F. Cribari-Neto (2004). Beta regression for modelling rates and proportions. Journal

of Applied Statistics 31 (7), 799–815.
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