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Abstract

In this paper we propose a Bayesian partition modeling for lifetime
data in presence of a cure fraction by considering a local structure
generated by a tessellation which depends on covariates. In this mod-
elling we including information of nominal qualitative variables with
more than two categories or ordinal qualitative variables. The proposed
modeling is based on a promotion time cure model structure but as-
suming that the number of competing causes follow a power series
distribution. It is an alternative modeling strategy to the conventional
survival regression modeling generally used for modeling lifetime data
in presence of a cure fraction, which models the cure fraction through
a (generalized) linear model of the covariates. An advantage of our
approach is its ability to capture the effects of covariates in a local
structure. The flexibility of having a local structure is crucial to capture
local effects and features of the data. The modelling is illustrated on
two real melanoma data sets.
Keywords: Survival Analysis; Long-term survival models; Bayesian
partition.

1 Introduction

With rapid progress in the medical and health sciences, many datasets dealing
with time to relapse now reveal a substantial proportion of patients who
are expected non-susceptible to the occurrence to event interest (i.e. who
∗jhonbg@gmail.com
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are cured). Lifetime data in which there are sampling units non-susceptible
to the occurrence of the event of interest, which can usually be caused by
different latent competing causes, are common in applications from various
areas, such as medical, financial and industrial ones.

The competing causes are latent in the sense that there is no information
about which factor was responsible for the component failure (or individual
death). The statistical literature for modeling lifetime data in presence of a
cure fraction and latent competing causes is by now vast and growing rapidly.
Interested readers can refer to Boag (1949), Berkson & Gage (1952), Maller
& Zhou (1996), Yakovlev & Tsodikov (1996), Chen et al. (1999), Tsodikov
et al. (2003), Yin & Ibrahim (2005), Cooner et al. (2007), de Castro et al.
(2009), Rodrigues et al. (2009b) and Cancho et al. (2011) among others.

Usually the cure fraction models are modifications of the mixture cure
model (Berkson & Gage, 1952) or the promotion time model (Yakovlev &
Tsodikov, 1996; Chen et al., 1999). Recent papers suggest other flexible
models for data with a cure fraction as Cooner et al. (2007), Gu et al. (2011)
and Rodrigues et al. (2011), where it is assumed that the number of latent
competing causes is a random variable with a discrete distribution such as
the binomial, Poisson, geometric and so on.

The conventional approaches described above model the cure fraction
through a (generalized) linear model of the covariates. However, there
are situations where the use of this approach suffers from poor predictive
results (Hoggart & Griffin, 2001). For extra flexibility, in this paper, we
model the covariate effect locally in the cure fraction using the so called
Bayesian partition model (BPM) proposed by Holmes et al. (1999). Instead
of considering a link function to connect the cure fraction to covariates, the
BPM uses a local structure generated by a tessellation and which depends on
covariates.

The partition modeling is not a new idea and various authors have studied
partition models from a Bayesian viewpoint. Among them we can mention
Yao (1984), Green & Sibson (1978) and Heikkinen (1998), with applications
in various areas, such as geostatistics, genetics and finance, among others.

However, in medical and epidemiological studies, often interest focuses
on studying nominal qualitative variables with more than two categories or
ordinal qualitative variables. For example, researchers may be interested on
study of cancer of melanoma, where we have important factors as disease
stage, tumor size, category node, among other. So the aim of the present
paper is to present flexible methodologies suited to incorporate information
on nominal qualitative variables with more than two categories or ordinal
qualitative variables into Bayesian analysis. However, to the best of our
knowledge the present paper is the first attempt to consider partition mod-
elling in the context of lifetime data in presence of competing risks and a
cure fraction.

For lifetime data with a cure fraction, the partition model schemes usually
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split the time axis as can be seen Ibrahim et al. (2001a) and Kim et al. (2007),
but these models also make use of a link function to connect the cure fraction
to covariates.

In this paper however, we propose a BPM for lifetime data in presence of
a cure fraction by considering a local structure generated by a tessellation
and which depends on covariates. The proposed modeling is based on a
promotion time cure rate model structure, but assuming that the number of
competing causes follow a power series distribution. An advantage of our
approach is its ability to capture the effects of covariates in a local structure.
The flexibility of having a local structure is crucial to capture local effects
and features of the data.

The paper is organized as follows. In Section 2 we present the cure rate
model with latent competing causes structure. In Section 3 we present the
BPM scheme considered as well as the inferential approach. In Section 4 we
will apply the proposed BPM to a real dataset on melanoma data. The paper
is ended with Section 5 where we present some final comments.

2 Model formulation

Let N be a discrete random variable representing the latent number of
competing causes needed to the occurrence of a particular event of interest.
We assume that N has the power series distribution (Johnson et al., 2005)
with probability mass function

P [N = k; θ] =
akθ

k

η(θ)
, k = 0, 1, 2, . . . , θ > 0, (1)

where ak > 0 and η(θ) =
∑∞

k=0 akθ
k < +∞. In (1), θ and η(.) are called

the power parameter and the series function, respectively. The probability
generating function of N is given by

G(s) =
η(θs)

η(θ)
, 0 ≤ s ≤ 1. (2)

For different series functions η(.), Kosambi (1949) and Noack (1950)
obtained the following results we present in Table 1. The parameters K and
τ in the Table 1 are non-negative integer numbers. Moreover, the support of
logarithmic distribution was shifted to N = 0, 1, 2, . . ..

Conditioned on N , let Zv, v = 1, . . . , N be i.i.d. random variables with
cumulative distribution function F (t) and survival function S(t) = 1− F (t),
where Zv is the time of occurrence of an particular event of interest due
to the v-th cause. For instance, in a biological scenario N may denote the
number of carcinogenic cells which can produce a detectable tumor (Yakovlev
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Table 1: Distribution of N for different series function η(.)

η(θ) Θ
Support ak a0 Distribution

p(N |θ)

(1 + θ)K θ > 0 k = 0, 1, . . . ,K
(
K
k

)
1

Binomial

Bi
(
K, θ

1+θ

)
eθ θ > 0 k = 0, 1, 2, . . . 1

k! 1
Poisson
Poi(θ)

(1− θ)−τ θ ∈ (0, 1) k = 0, 1, 2, . . .
(
τ+k−1
τ−1

)
1

Negative binomial
Bn(τ, θ)

− log(1−θ)
θ

θ ∈ (0, 1) k = 0, 1, 2, . . . 1
(k+1) 1

Logarithmic
Lg(θ)

& Tsodikov, 1996). The observable time of occurrence of event of interest is
defined by

T = min {Z1 . . . , ZN} . (3)

Under this setup, according to Tsodikov et al. (2003), Rodrigues et al.
(2009a), among others, the survival function for the population is given by

Spop(t) = G(S(t)) =
η(θS(t))

η(θ)
. (4)

The survival function Spop(t) given in (4) is not a proper survival function
by the fact that

p0 = lim
t→∞

Spop(t) =
η(θS(∞))

η(θ)
=

a0
η(θ)

< 1, (5)

where p0 denotes the proportion of cured that may be present in the pop-
ulation from which the data were taken. So, the improper density and
risk functions associated with long-term survival function in (4) are given
respectively by

fpop(t) =
η′(θS(t))

η(θ)
θf(t) and hpop(t) =

η′(θS(t))

η(θS(t))
θf(t), (6)

where f(t) denotes the (proper) density function of the lifetime Z and
η′(θS(t)) = dη(s)/ds|s=θS(t).

In the Table 2 show the improper survival and density functions for
different distributions of N . We changed the parametrization in the binomial
distribution for considering θ∗ = θ/(1 + θ).
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Table 2: Survival function Spop(t), density function fpop(t) and cure fraction
p0 for different distributions for N .

p(N |θ) Spop(t) fpop(t) p0

Bi(K, θ∗) (1− θ∗ + θ∗S(t))K Kθ∗f(t)(1− θ∗ + θ∗S(t))K−1 (1− θ∗)K

Poi(θ) exp(−θF (t)) θf(t) exp(−θF (t)) e−θ

Bn(τ, θ)
(

1−θ
1−θS(t)

)τ τθ(1−θ)τf(t)
(1−θS(t))τ+1 (1− θ)τ

Lg(θ) log(1−θS(t))
S(t) log(1−θ) −f(t) θS(t)+(1−θS(t)) log(1−θS(t))

S2(t)(1−θS(t)) log(1−θ)
−θ

log(1−θ)

3 Bayesian partition modelling

In this section we present the BPM as proposed by Holmes et al. (1999, 2005).
The partition models are methods that split some domain of interest X ⊂ Rp
(p ≥ 1) in disjoint regions, and assign the same probability distribution
for the response variable Y in each region of X . In this context, the BPM
partitioning X by a tessellation of a structure T defining regions Rm ⊆ X ,
m = 1, . . . ,M .

One characteristic of the BPM is that assigning conjugate priors within
the disjoint regions, the marginal likelihood is available for any tessellation
structure. The availability of the marginal likelihood function for the tes-
sellation structure greatly reduces the space of the models as well as the
dimension of the parameter space.

In this paper we consider orthogonal hyperplanes tessellation, the hy-
perplanes are defined by split points cj∗ , j∗ = 1, . . . , p. So a tessellation
structure is given by T = (c1, . . . , cp).

3.1 Likelihood function

The orthogonal hyperplane tessellation defines M regions in X , denote by
R1, . . . , RM the regions in X . Let Nmj be the number of latent causes of the
event of interest for the j-observation with power series distribution with
parameter θm, j = 1, . . . , nm in the region Rm.

Given Nmj , let Z1
mj , . . . , Z

Nmj
mj be times of occurrence of the event of

interest with cumulative distribution function F (·|γ) = 1− S(·|γ), where γ
is the vector of parameters.

Let Tmj be as in (3) and Cmj the censoring time. We observe Ymj =
min{Tmj , Cmj} and δmj be the censoring indicator with δmj = 1 if Ymj = Tmj
and δmj = 0 otherwise.
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Then, the likelihood function for the complete data under uninformative
censoring given the tessellation T is

L(γ,θ,T|N ,y, δ) =

M∏
m=1

nm∏
j=1

{S(ymj |γ)}Nmj−δmj {Nmjf(ymj |γ)}δmjp(Nmj |θm),

(7)

where θ = (θ1, . . . , θM )> and N = (N1, . . . , Nn)> is a vector of latent
variables. Note that in each region Rm the number of causes for the event of
interest Nmj has the same probability distribution ( e.g. Poisson ).

We assume a Weibull distribution with vector of parameters γ = (α, λ)>

for the event time Zmj . The cumulative distribution is given by

F (y|γ) = 1− exp(−yαeλ), (8)

where α > 0 and λ ∈ R. The likelihood function given in (7) can be written
as

L(γ,θ,T|N ,y, δ) =

M∏
m=1

exp

−eλ nm∑
j=1

yαmjNmj

 nm∏
j=1

(
Nmjαe

λyα−1
mj

)δmj
p(Nmj |θm).

3.2 Prior and Posterior distribution

According to the BPM methodology, the joint prior distribution for (γ,θ,T)
is given by

p(γ,θ,T) = p(γ)p(θ,T) = p(γ)p(θ|T)p(T), (9)

and we assume that the parameters of the Weibull distribution being inde-
pendent, so p(γ) = p(α)p(λ) where α ∼ Gamma(µα, σα) and λ ∼ N(µλ, σ

2
λ),

where µα, σα, µλ and σλ are hyperparameters. Considering that the parame-
ters betwen regions of X are independent, we have

p(θ|T) =
M∏
m=1

p(θm|T). (10)

Depending on the series function, η(θ) have different distributions and
therefore the prior distributions for θ are also different. So, if N follow
the binomial, negative binomial and logarithmic distribution then the prior
distribution is the beta distribution. For the Poisson distribution the prior
conjugate is the gamma distribution.

In the BPM, the latent vector N is introduced to draw samples from the
posterior distribution p(γ,θ,T|y, δ). So the joint posterior distribution for
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(γ,θ,T,N) is given by

p(γ,θ,T,N |y, δ) ∝
M∏
m=1

exp

eλ
nm∑
j=1

yαmjNmj


nm∏
j=1

(
Nmjαe

λyα−1
mj

)δmj
p(Nmj |θm)

× p(γ)p(θ,T). (11)

The analysis analytic or numerical of posterior distribution (γ,θ,T,N |y, δ)
is intractable in this situation. So, our aim is to simulate samples from the
joint posterior distribution and for this purpose we use the method MCMC
(see Brooks et al., 2011).

Therefore, we need to sample from the full conditional distributions
(θ,T|N ,γ,y, δ), (N |θ,T,γ,y, δ) and (γ|θ,T,N ,y, δ). So, note that to
sample from (θ,T|γ,y, δ) we consider the full conditional distributions
given by

p(θ,T|N ,γ,y, δ) = p(T|N ,γ,y, δ)p(θ|T,N ,γ,y, δ). (12)

In this context, the BPM supposes the parameters between each region
of X are independent and taking into account that the full conditional
distribution for (T|N ,γ,y, δ) is given by

p(T|N ,γ,y, δ) ∝
∫
p(N |θ,T)p(θ|T)p(T)dθ = p(N |T)p(T). (13)

The conditional distribution of (T|N ,γ,y, δ) given in (13) is nonstan-
dard and so we use a Metropolis-Hastings MCMC scheme to sample of full
conditional distribution of T(see section 3.3). So, the analytical form of
p(N |T) and full conditionals for each case is given by

(i) Binomial
If N ∼ Bi(K, θ∗), θ∗ ∈ (0, 1) then the conjugate prior for each θ∗m is the beta
distribution θ∗m ∼ Beta(a0, a1), where a0 and a1 are hyperparameters. Hence,
the prior on θ∗ is p(θ∗|T) =

∏M
m=1 p(θ

∗
m|a0, a1). Therefore

p(N |T) =
n∏
i=1

(
K

Ni

) M∏
m=1

B(
∑nm

j=1Nmj + a0,Knm −
∑nm

j=1Nmj + a1)

B(a0, a1)
,

(14)

where B(.) is the beta function. On the other hand, the full conditional
distribution for θ∗mand Nmj are given respectively by

θ∗m|N ,T ∼ Beta

 nm∑
j=1

Nmj + a0, nm −
nm∑
j=1

Nmj + a1

 , (15)
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and

Nmj |T,y, δ ∼ Bi
(
K − δmj ,

θ∗mS(ymj |γ)

θ∗mS(ymj |γ) + 1− θ∗m

)
+ δmj . (16)

(ii) Poisson
In case that N ∼ Poi(θ), θ > 0, then a conjugate prior for θm is the gamma
distribution θm ∼ Gamma(b0, b1), where b0 e b1 are two specified hyperpa-
rameters. Thus, the prior on θ is p(θ|T) =

∏M
m=1 p(θm|b0, b1) and hence

p(N |T) is given by

p(N |T) =

M∏
m=1

1∏nm
j=1Nmj !

bb01
Γ(b1)

Γ(
∑nm

j=1Nmj + b0)

(nm + b1)
∑nm
j=1Nmj+b0

, (17)

where Γ(.) is gamma function. On the other hand, the full conditional
distribution for θmand Nmj are given respectively by

θm|N ,T ∼ Gamma

 nm∑
j=1

Nmj + b0, nm + b1

 , (18)

and

Nmj |γ,θ,T,y, δ ∼ Poi (θmS(ymj |γ)) + δmj . (19)

(iii) Negative binomial
If N ∼ Bn(τ, θ), 0 < θ < 1, the conjugate prior for θm is the beta distribution
θm ∼ Beta(c0, c1), where c0 and c1 are two specified hyperparameters and so
p(θ|T) =

∏M
m=1 p(θm|c0, c1). Therefore p(N |T) is given by

p(N |T) =

n∏
i=1

(
τ +Ni − 1

τ − 1

) M∏
m=1

B(τnm + c0,
∑nm

j=1Nmj + c1)

B(c0, c1)
. (20)

The full conditional distribution for θm and Nmj are given respectively by

θm|T,N ∼ Beta

 nm∑
j=1

Nmj + c0, τnm + c1

 , (21)

and

Nmj |γ,θ,T,y, δ ∼ Bn
(
τ + δmj , θm exp

(
−eλyαmj

))
+ δmj . (22)

(iv) Logarithmic
In case that N ∼ Lg(θ), 0 < θ < 1, we assign the beta distribution as
prior distribution for θm, θm ∼ Beta(d0, d1), where d0 and d1 are two speci-
fied hyperparameters and hence p(θ|T) =

∏M
m=1 p(θm|d0, d1). The integral
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p(N |T) =
∫
p(N |θ,T)p(θ|T)dθ , is not explicitly available, and thus we use

numerical integration.
The full conditional for θm is given by

p(θm|N ,T) ∝ θ
nm+Nmj+d0−1
m (1− θm)d1−1

[− log(1− θm)]nm
. (23)

Considering the assumption that Nmj ’s are independent random variables
then full conditional for Nmj in each region Rm is given by

p(Nmj |γ,θ,T,y, δ) ∝ exp
{
−eλyαmjNmj

}
N
δmj
mj

θ
Nmj
m

Nmj + 1
. (24)

If δmj = 0 the conditional distribution for number of competing causes
that can produce the event of interest is

Nmj |γ,θ,T,y, δ ∼ Lg(θmS(ymj |γ)). (25)

However if δmj = 1 then

p(Nmj |γ,θ,T,y, δ) ∝ Nmj

Nmj + 1
[θmS(ymj |γ)]N . (26)

For generation of Nmj , we considering the algorithm proposed by Kemp
(1981) although adapted for the case where the logarithmic distribution is
shifted.

Finally, the full conditional distributions for the parameters of the Weibull
distribution γ = (α, λ)> are respectively,

p(λ|α,N ,T,y, δ) ∝ edλ exp

(
−eλ

n∑
i=1

Niy
α
i

)
exp

(
−(λ− µλ)2

2σ2λ

)
, (27)

p(α|λ,N ,T,y, δ) ∝ αd
(

n∏
i=1

yδii

)α
exp

(
−eλ

n∑
i=1

Niy
α
i

)
p(α|µα, σα), (28)

where d =
∑n

i=1 δi.

3.3 Computational Strategy

The strategy computational for numerical and dichotomous predictors is
given in Hoggart & Griffin (2001). Generally, categorical predictors are
not necessarily dichotomous therefore the algorithm has to be modified to
handle with qualitative predictors but in general form. In this context, let
XT a categorical covariate with CT categories, XT ∈ {1, 2, . . . , CT}, and
suppose that ρ is a partition of XT and Mρ the number of cluster(subsets)
for partition ρ of XT. The partition ρ is unknown, we need assign to it a
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prior probability p(ρ). We assume that p(ρ) is a discrete uniform distribution
on {1, . . . , nρ} where nρ is the number different partitions of XT.

Therefore, a natural relationship among the number the total numbers
nρ of partitions and scale of XT. In the case that XT has a nominal scale the
number nρ is much greater than when XT is ordinal scale. In Table 3 shows
the number Mρ of subsets and total partitions considering CT = 4, note that
if XT is ordinal variable the numbers of subsets in each partition ρ(ordered)
is less if XT out nominal variable.

Table 3: Number of clusters and total partitions for XT if CT = 4

Mρ ρ (unordered) ρ (ordered)
1 1 1
2 7 3
3 6 3
4 1 1
nρ 15 8

So, we denote by I the index set of predictor variables I = {1, . . . , p},
and IT is the index set of predictor variables present in the tessellation
T. Considering that M = 1 (i.e., IT = ∅) then starting the algorithm
with initialize the tessellation structure, T, with just one randomly drawn
predictor variable and choose a split point. In each iteration of the algorithm
and when 1 < M < n, we try with probability 1/3, the first three moves.
The first two moves concern the selection of covariate. The last three moves
involve the categorical predictor with more than two categories.

• Add. A new partition can be added to the tessellation structure T by
choosing a new splitting point of a predictor variable in I. The splitting
point is selected from the empirical distribution of the predictor variable
chosen.

• Delete. A hyperplane can be eliminated by choosing a random predic-
tor variable r∗ present in the tessellation, r∗ ∈ IT.

• Move. A hyperplane can be changed by selecting a new splitting point
of the empirical distribution of the selected variable in IT.

• Merge.The number of clusters in the covariate XT is decreased, by
merging two subsets.

• Split.The number of clusters in the covariate XT is increased, by split-
ting up one subset into two new subsets.

• Alter. The partition ρ for XT is altered, but the number of subsets
being equal.
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The new tessellation T′ proposal is accepted with probability:

α(T′,T) = min

{
1,
p(N |T′)p(T′)
p(N |T)p(T)

}
. (29)

Hoggart & Griffin (2001) proposed the first three moves. In this paper,
added the last 3 moves, which only concern qualitative covariate and are the
main novelty of our approach. For easy explanation of proposed moves for
categorical covariate, consider XT with 4 categories, XT ∈ {1, 2, 3, 4}. Let ρ
a partition of XT with Mρ = 3, ρ = {{1, 3}, {2}, {4}}. Therefore the number
of clusters for XT varies between 1 and 4 subsets.

Considering the move merge then two subsets in the ρ are combined,
where a choice of groups is random, so have

(
Mρ

2

)
possibilities for this choice,

each with equal probability 2
Mρ(Mρ−1) . For example, we choose 2 and 4 for

merged, this lead to a new partition ρ′, ρ′ = {{1, 3}, {2, 4}} with Mρ′ = 2.
In this context, the move split in the algorithm, we would be splitting

one subset in two. The choice is made randomly restricted to subsets with
cardinality greater than one. So, let M̃ρ the number of subsets with the
number of subsets with more than one category in the partition ρ. The
current partition ρ we have M̃ρ = 2 and assuming that we choose {1, 3} then
the new partition is given by ρ = {{1}, {3}, {2, 4}} with Mρ = 3 subsets.

For the move alter, assuming that the partition of XT is ρ then changing
the setting of subsets in ρ but the number of clusters being equal. In the
current grouping ρ, the number of subsets is Mρ = 3, then consider another
partitions for XT for instance {{1, 4}, {2}, {3}}. In the table 3, observed that
if Mρ = 3 we have 6 different partitions for XT(nominal).

If the categorical variable has more than four categories this algorithm
can be applied although the computational cost is high. If we consider only
partitions which maintain the order the number of partition of XT decreases.

3.4 Models comparison criteria

To asses the goodness of fit of the models, we use the logarithm of pseudo-
marginal likelihood (LPML) given in Ibrahim et al. (2001b, chap. 6). LPML
is a well-established Bayesian model comparison criterion based on the con-
ditional predictive ordinate (CPO) statistics, which is particularly suitable
for the cure rate models.

Let D−i denote the data with the ith observation deleted. For each model,
for an observed time to event (δi = 1) we define g(yi|ϑ) = fpop(yi|ϑ) and,
for a censored time (δi = 0), g(yi|ϑ) = Spop(yi|ϑ) where ϑ = (θ,γ)>.

We denote the posterior density of ϑ given D−i by p(ϑ|D−i), i = 1, . . . , n,
therefore for the ith observation, CPOi can be written as

CPOi =

∫
g(yi|ϑ)p(ϑ|D−i)dϑ =

{∫
p(ϑ|D)

g(yi|ϑ)
dϑ
}−1

. (30)
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A Monte Carlo approximation of CPOi (Chen et al., 2000) is given by

ĈPOi =

{
1

B

B∑
b=1

1

g(yi|ϑb)

}−1
, (31)

where B denote the size of sample MCMC after the burning. Based on
CPOi’s another criterion for comparison is the statistic defined by LPML =∑B

b=1 log(CPOi). The larger the LPML, the better the fit of a given model.

4 Application

The data set for illustrating our methodology was extracted from a melanoma
study (the melanoma is a type of malignant cancer). A objective of the study
is to evaluate the effectiveness of applying a high dosage of interferon alfa-2b
as a way to prevent the recurrence of cancer. Patients were included in
the study between 1991 to 1995, and follow-up was conducted until 1998.
The response variable Y represents the time from patient to death or time
of censoring. The original sample comprises 427 patients, 10 of whom
were removed from analysis, since their tumor thickness data are missing.
Therefore we have n = 417 patients, with 56% of censored observations. The
variables include y: time (in years); x1: treatment (0: observation, n = 204;
1: interferon, n = 213); x2: age(in years); x3: nodule category(1,n = 82;
2,n = 87; 3,n = 137; 4,n = 111); x4: sex (0: male,n = 263; 1: female,
n = 154); x5: performance status(PS) means patient’s functional capacity
as regards his/her daily activities (0: fully active,n = 363 1: other,n = 54)
and x6: tumor thickness (in mm ). For more details related to the melanoma
data Kirkwood et al. (2000) and Ibrahim et al. (2001b) may be consulted.

We consider as hyperparameters µα = σα = 0.1 for the gamma distribu-
tion of the parameter α and the normal distribution with mean µλ = 0 and
variance σ2λ = 100 for the parameter λ.

The hyperparameters for beta distribution are a0 = a1 = c0 = c1 = d0 =
d1 = 1 and finally for gamma distribution we assume b0 = b1 = 0.1.

Considering these prior densities we generated two parallel independent
runs of the MCMC sampler with size 700000 for each parameter, disregarding
the first 300000 iterations to eliminate the effect of the initial values and, to
avoid correlation problems, we considering a spacing of length 100, obtaining
a sample of size 4000 in each chain. To monitor the convergence of the
MCMC sampler we resorted to the methods recommended by Cowles &
Carlin (1996). Consider in the first chain initial values for λ and α equal
to −5 and 5 respectively in the second chain were 5 and 9, in both chains
initiate the algorithm with N = (1, . . . , 1).

In the data set x1, x4 and x5 are binary variables then the division of
any of these variables follows as, if it occurs will result in two groups, for
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example the variable x4 which represents sex will be divided in male and
female. In the case of the covariate x3 with four categories x3 ∈ {1, 2, 3, 4},
the idea of partition of x3 was made considering the section 3.3 except that
the choice of partitions has an order.

We tried different binomial and negative binomial models by taking
K = 1, 2, 7, 10 and τ = 1, 3, 7, 13 respectively. For the binomial model, the
best fit is when K = 10. In the negative binomial model the best fit was
when τ = 1 i.e. the geometric model.

Table 4 presents the probability of splitting for each of the covariates
for each model. We note that the ordinal covariate x3 is almost always
in the tessellation, so the tessellation by orthogonal hyperplanes identifies
that x3 has a significant effect on the response variable. One consequence
is that the splitting probability of x3 is very close to 1.00. A minor effect
on Y is observed by considering the covariates x2 and x6. For the other
covariates, the probability of splitting is close to zero which means that the
are non-informative.

Table 4: Probability of splitting for covariates for different models.

Model x1 x2 x3 x4 x5 x6
Binomial 0.001 0.123 0.999 0.001 0.002 0.020
(K = 10)
Poisson 0.018 0.307 1.000 0.025 0.024 0.102

Negative binomial 0.020 0.256 1.000 0.019 0.017 0.092
(τ = 1)

Logarithmic 0.010 0.133 1.000 0.012 0.009 0.131

Table 5 show a mean posterior probabilities for each of the partitions for
the covariate x3. The BPM which leads to the partition with largest posterior
probability is the partition formed by {1, 2, 3} and {4} for the binomial,
Poison and negative binomial models. Nevertheless, in the logarithmic model
the partition {1, 2} and {3, 4} have larger posterior probability. Moreover, it
is interesting to note that the partitions {1}, {2, 3}, {4} and {1}, {2}, {3, 4}
are separated by category 2 and this way the BPM identifies a point of change
around the category 2.

Table 6 gives LPML, posterior means, standard deviations (SD) and 95%
highest posterior density (HPD) interval for the parameters of Weibull for
all models. Also, we calculated the estimated potential scale reduction R̂
(Gelman & Rubin, 1992) for the parameters of Weibull distribution, which
for all parameter is close to 1, indicating good convergence.

We also note from Table 6 that, based on the LPML statistics the logarith-
mic model is deemed as the best fitting model. Note that, the SD of posterior
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Table 5: Posterior probabilities for the partitions of the covariate x3.

Partition
Posterior probability

Bi(K = 10) Poi Neg bin(τ = 1) Log
{1, 2, 3, 4} 0.000 0.000 0.000 0.000
{1}, {2, 3, 4} 0.005 0.002 0.002 0.016
{1, 2}, {3, 4} 0.148 0.164 0.214 0.486
{1, 2, 3}, {4} 0.639 0.766 0.340 0.090
{1}, {2}, {3, 4} 0.011 0.002 0.028 0.133
{1}, {2, 3}, {4} 0.085 0.033 0.191 0.154
{1, 2}, {3}, {4} 0.091 0.032 0.170 0.074
{1}, {2}, {3}, {4} 0.021 0.001 0.056 0.047

estimates of parameter λ in the binomial, Poisson and negative binomial are
close, but in the logarithmic model is larger than the others models.

Table 6: Posterior summaries for the parameters of the Weibull distribution.

Model LPML Parameter Mean SD 95% HPD
Binomial −521.775 α 1.599 0.109 (1.394; 1.820)
(K = 10) λ −1.295 0.125 (−1.532;−1.050)
Poisson −521.482 α 1.721 0.116 (1.495; 1.947)

λ −1.645 0.135 (−1.920;−1.388)
Negative Binomial −519.892 α 1.869 0.125 (1.624; 2.105)

(τ = 1) λ −2.069 0.125 (−2.390;−1.757)
Logarithmic −519.004 α 2.044 0.136 (1.766; 2.293)

λ −2.454 0.213 (−2.890;−2.071)

Figure 1 shows the Kaplan-Meier estimates of survival function and
estimates obtained from binomial, Poisson and negative considering the
partition with the most likely covariate x3 i.e. the partition formed by {1, 2, 3}
and {4}. In fact, the binomial and Poisson models gave similar fittings but
the negative binomial has a better fit.

Figure 2 display the Kaplan-Meier estimates of survival function and
estimates of logarithmic model considering the partition with larger posterior
probability i.e. {1, 2} and {3, 4} for covariate x3.
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(a) Binomial(K = 10)
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(b) Poisson
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(c) Negative Binomial (τ = 1)

Figure 1: Kaplan-Meier curves stratified by nodule category for the clusters
{1, 2, 3} (upper curve) and {4} (lower curve) and estimates of the survival
function according to different models.
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Figure 2: Kaplan-Meier curves stratified by nodule category for the clusters
{1, 2} (upper curve) and {3, 4} (lower curve) and estimates of the survival
function according to logarithmic model .

5 Discussion

In this paper, we proposed the power series cure rate based in the Bayesian
partition modelling. The model proposed is a extension nonparametric for
the mixture cure rate model (Berkson & Gage, 1952) and the promotion time
model (Chen et al., 1999).

We propose a strategy computational that considers quantitative, dichoto-
mous and also qualitative covariates with more two categories and order.
Thus, the methodology proposed extend the model proposed by Hoggart &
Griffin (2001).

An important feature in Bayesian partition modeling with orthogonal
hyperplanes is the natural selection of covariates. Each hyperplane divides
the data set in only one covariate and thus the hyperplanes are included
when the covariate affects the fit of the model.

According to our computational strategy, the partition of ordinal covari-
ates is performed respecting an order, and this is novelty. We note that the
presence of order in covariate qualitative leads to the need of adaptation of
the adopted simulation procedure by the fact that the categories can not be
grouped randomly.

In general, the Bayesian partition model with orthogonal hyperplanes
proved to be efficient on a large data set and when using the power series
cure rate model. Moreover, in survival studies, time-dependent covariates
may be available. The tessellation with the computational strategy given by
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hyperplanes as in Section 3.3 has not been researched yet. Research in this
direction can be seen as a step further to generalize the proposed framework
to include time-dependent covariates.

Acknowledgements

The research was partially supported by the Brazilian Organizations FAPESP,
CNPq and CAPES

References

Berkson, J. & Gage, R. P. (1952). Survival curve for cancer patients following
treatment. Journal of the American Statistical Association, 47, 501–515. 2,
16

Boag, J. W. (1949). Maximum likelihood estimates of the proportion of
patients cured by cancer therapy. Journal of the Royal Statistical Society.
Series B (Methodological), 11, 15–53. 2

Brooks, S., Gelman, A., Jones, G. L. & Meng, X.-L., editors (2011). Handbook
of Markov Chain Monte Carlo. Chapman & Hall/CRC, Boca Raton, FL. 7

Cancho, V. G., Rodrigues, J. & de Castro, M. (2011). A flexible model for
survival data with a cure rate: a Bayesian approach . Journal of Applied
Statistics, 38, 57 – 70. 2

Chen, M.-H., Ibrahim, J. G. & Sinha, D. (1999). A new Bayesian model for
survival data with a surviving fraction. Journal of the American Statistical
Association, 94, 909–919. 2, 16

Chen, M.-H., Shao, Q. M. & Ibrahim, J. G. (2000). Monte Carlo Methods in
Bayesian Computation. Springer, New York. 12

Cooner, F., Banerjee, S., Carlin, B. P. & Sinha, D. (2007). Flexible cure
rate modeling under latent activation schemes. Journal of the American
Statistical Association, 102, 560–572. 2

Cowles, M. K. & Carlin, B. P. (1996). Markov chain Monte Carlo convergence
diagnostics: a comparative review. Journal of the American Statistical
Association, 91, 883–904. 12

de Castro, M., Cancho, V. G. & Rodrigues, J. (2009). A Bayesian long-term
survival model parametrized in the cured fraction. Biometrical Journal, 51,
443–55. 2

17



Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences. Statistical Science, 7, 457–472. 13

Green, P. J. & Sibson, R. (1978). Computing Dirichlet tessellations in the
plane. Computer Journal, 21, 168–173. 2

Gu, Y., Sinha, D. & Banerjee, S. (2011). Analysis of cure rate survival data
under proportional odds model. Lifetime Data Analysis, 17, 123–134. 2

Heikkinen, J. (1998). Curve and surface estimation using dynamic step
functions. In D.Dey, editor, Practical Nonparametric and Semiparametric
Bayesian Statistics, no. 133 in Lecture Notes in Statistics, chap. 14, pages
255–272, New York. Springer-Verlag. 2

Hoggart, C. & Griffin, J. E. (2001). A Bayesian partition model for cus-
tomer attrition. In E. I. George, editor, Bayesian Methods with Applications
to Science, Policy, and Official Statistics(Selected Papers from ISBA 2000),
pages 61–70, Creta,Greece. International Society for Bayesian Analysis,
Proceedings of the the Sixth World Meeting of the International Society
for Bayesian Analysis. 2, 9, 11, 16

Holmes, C. C., Denison, D. G. T. & Mallick, B. K. (1999). Bayesian parti-
tioning for classification and regression. Technical report, Department of
Mathematics, Imperial College. 2, 5

Holmes, C. C., Denison, D. G. T., Ray, S. & Mallick, B. K. (2005). Bayesian pre-
diction via partitioning. Journal of Computational and Graphical Statistics,
14, 811–830. 5

Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2001a). Bayesian semiparametric
models for survival data with a cure fraction. Biometrics, 57, 383–388. 3

Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2001b). Bayesian Survival Analysis..
Springer, New York. 11, 12

Johnson, N. L., Kemp, A. W. & Kotz, S. (2005). Univariate Discrete Distribu-
tions . Wiley, Hoboken, third edition. 3

Kemp, A. W. (1981). Efficient generation of logarithmically distributed
pseudo-random variables . Journal of the Royal Statistical Society. Series C
(Applied Statistics), 30, 249–253. 9

Kim, S., Chen, M.-H., Dey, D. K. & Gamerman, D. (2007). Bayesian dynamic
models for survival data with a cure fraction. Lifetime Data Analysis, 13,
17–35. 3

Kirkwood, J. M., Ibrahim, J. G., Sondak, V. K., Richards, J., Flaherty, L. E.,
Ernstoff, M. S., Smith, T. J., Rao, U., Steele, M. & Blum, R. H. (2000). High-

18



and low-dose interferon alfa-2b in high-risk melanoma: First analysis of
intergroup trial e1690/s9111/c9190. Journal of Clinical Oncology, 18,
2444–2458. 12

Kosambi, D. D. (1949). Characteristic properties of series distributions.
Proceedings of the National Institute for Science, India, 15, 109–113. 3

Maller, R. A. & Zhou, S. (1996). Survival Analysis with Long-Term Survivors..
Wiley, New York,NY. 2

Noack, A. (1950). A class of random variables with discrete distributions.
The Annals of Mathematical Statistics, 21, 127–132. 3

Rodrigues, J., Cancho, V. G., de Castro, M. & Louzada-Neto, F. (2009a). On
the unification of long-term survival models. Statistics & Probability Letters,
79, 753–759. 4

Rodrigues, J., de Castro, M., Cancho, V. G. & Balakrishnan, N. (2009b).
COM-Poisson cure rate survival models and an application to a cutaneous
melanoma data. Journal of Statistical Planning and Inference, 139, 3605–
3611. 2

Rodrigues, J., de Castro, M., Balakrishnan, N. & Cancho, V. G. (2011).
Destructive weighted Poisson cure rate models. Lifetime Data Analysis, 17,
333–346. 2

Tsodikov, A. D., Ibrahim, J. G. & Yakovlev, A. Y. (2003). Estimating cure
rates from survival data: an alternative to two-component mixture models.
Journal of the American Statistical Association, 98, 1063–1078. 2, 4

Yakovlev, A. Y. & Tsodikov, A. D. (1996). Stochastic Models of Tumor Latency
and Their Biostatistical Applications. World Scientific, Singapore. 2, 3

Yao, Y.-C. (1984). Estimation of a noisy discrete-time step function: Bayes
and empirical Bayes approaches. The Annals of Statistics, 12, 1434–1447.
2

Yin, G. & Ibrahim, J. G. (2005). Cure rate models: A unified approach. The
Canadian Journal of Statistics, 33, 559–570. 2

19


	RT257 capa
	�                                           ISSN 0104-0499���PROGRAMA INTERINSTITUCIONAL DE�PÓS-GRADUAÇÃO EM ESTATÍSTICA�UFSCar-USP��DEs-UFSCar e SME-ICMC-USP�������������RELATÓRIO TÉCNICO �

	RT257 teoria metodo vera jhon mario
	Introduction
	Model formulation
	Bayesian partition modelling
	Likelihood function
	 Prior and Posterior distribution
	Computational Strategy
	Models comparison criteria

	Application
	Discussion


