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Abstract

In this work we deal with Bayesian inference for the parameters of some
distributions in the Weibull power series family. For statistical modeling pur-
poses, this class of three parameter distributions allows great flexibility. The
hazard rate function accommodates increasing, decreasing and upside down
bathtub shapes. Furthermore, the density function can be bimodal. We base
our inferences on the Markov chain Monte Carlo (MCMC) simulation meth-
ods. A goodness of fit diagnostic is developed using samples from the posterior
distribution. Results from a simulation study aimed to assess some frequen-
tist properties of the estimators are reported. The methodology is illustrated
with a real data set.

1 Introduction

Distributions for modeling the life length of individuals and materials are extensively
studied in the statistical literature under the headings of reliability and survival
analysis. Recently, many authors concentrate on proposals based on modifications
of well-known distributions, as in the works by Gupta & Kundu (2007), Carrasco
et al. (2009), Silva et al. (2010), Risti¢ & Balakrishnan (2012), Cordeiro et al. (2013)
to name just a few. A Bayesian approach for the modified Weibull (Lai et al.,
2003) was proprosed by Upadhyay & Gupta (2010). On the other side, following a
different stream of research, some authors presented new lifetime distributions by
compounding the exponential distribution with discrete distributions. Adamidis &
Loukas (1998) and Kus (2007) adopted the geometric and the Poisson distribution
giving rise to the exponential geometric (EG) and exponential Poisson (EP) distri-
butions, respectively. The exponential logarithmic (EL) distribution of Tahmasbi
& Rezaei (2008) stems from the composition between the exponential and the loga-
rithmic distributions. The two-parameter family proposed by Chahkandi & Ganjali
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Table 1: Some truncated at 0 distributions in the power series family.

Distribution  a, C(0) () )

Geometric 1 ie (1_19)2 (0,1)
Poisson 1/2! e —1 e’ (0, 00)
Logarithmic 1/z —log(1—6) (1—19) (0,1)
Binomial (M) A+6)m—1 m@A+6)m" (0,00)

(2009) includes as special cases the EG, EP, EL and exponential binomial (EB)
distributions. This family has decreasing failure rate (DFR) that could have sound
motivation, as stressed by Chahkandi & Ganjali (2009), among others. However, it
would be desirable to accommodate other behaviors of the hazard rate function.

Hence, by compounding the Weibull and the power series distributions, Morais
& Barreto-Souza (2011) proposed the Weibull power series (WPS) class of distribu-
tions. Their construction runs as follows. Let Y7, ...,Y, be a random sample from
the Weibull distribution with density function f(y|a,8) = afy* ! exp(—pBy®), for
a>0,8>0andy > 0, where Z follows the truncated at 0 power series distribution
with probability function

02’

a,
P(Zye):ma Z:1727"'7

where 6 € ©, a, > 0 does not depend on § and C'(0) = > 7=, axf”* (see Table 1). Let
X =min(Y1,...,Y7), so that the distribution of X|Z = z is Weibull with parameters
a and fz. The marginal distribution of X is termed the WPS distribution, whose
density and cumulative distribution functions are given by

af Bz Le P C' (fe=Pr")

e Pt
fal9) = &0 Sl

Caw

and F(x|9)=1
for x > 0, where ¥ = (a, #,0)". The identifiability of the WPS class is established
in the following proposition.

Proposition 1.1. The WPS class of distributions is identifiable.

P?”OOf. Let ’191 = (Oél7 ﬁl, 91)/ and ’192 = (062, /827 (92), such that ’191 7& ’192. Suppose that
F(z;9,) = F(x;9,) for all x > 0, which from (1) implies that

C(62) _ Clhe™™) _ C(fhe ™) (2)
0(91) 0(916751) 0(916*5120‘1) e

Without loss of generality, take 0y > 0. Since C(-) is monotone increasing it
follows that C(6)/C(61) > For oy # ay and p; # 62, there exists xy such
that fye=P270" < e P170" | so that C(fre=270") /C(B1e=P1%0") < 1. Therefore, the
equalities in (2) can not be satisfied, concluding the proof. O



Besides having as particular cases the exponential power series family of distri-
butions, the WPS class of distributions has increasing, decreasing and upside down
bathtub shaped failure rate function. Therefore, the WPS family is a more attrac-
tive class of distributions than the DFR family introduced by Chahkandi & Ganjali
(2009). Of course, the wide range of applications of the WPS family is not restricted
to the study of times to event data.

Here we develop inferential tools under a Bayesian viewpoint for the parameters
of the WPS class of distributions proposed by Morais & Barreto-Souza (2011). Our
paper unfolds as follows. In Section 2 we present the required steps to draw samples
from the posterior distribution. Also, in Section 2.1 a goodness of fit diagnostic
based on samples from the posterior distribution is developed. The results of a
simulation study are reported in Section 3. One illustrative example with a real
data set is worked out in Section 4. We end up with some remarks in Section 5.

2 Bayesian inference
We assume that «, § and 6 are a priori independent, that is,
m(9|h) = m(alco, do)m(Bler, di)m(0ca, da), (3)

where h denotes the vector of hyperparameters. We postulate 7(alcy, dy) = Ga(a; ¢,
do) and 7(B|c1, dy) = Ga(p; ¢1,dy), where Ga(+; ¢, d) denotes the density function of
the gamma distribution with mean equal to ¢/d. For the distributions in Table 1,
the prior specification for 6 is 7(0|ca, ds) = Be(6; ¢, ds) (geometric and logarithmic
distributions) and 7(0|ce, d2) = Ga(6; co,dy) (Poisson and binomial distributions),
where Be(; ¢, d) denotes the density function of the beta distribution. The vector
of hyperparameters h is chosen to ensure vague prior knowledge. Our choice for the
prior distribution enables a convenient implementation of the Gibbs sampler (Chen
et al., 2000), as the reason for this will become clear soon.
From (1) and (3), the posterior distribution of 9 is given by

n

7(I|z, h) o w(O|h) [ ] f(2i9).

i=1

However, to ease the computations, we resort to data augmentation. The observed
data X = (Xi,...,X,) is augmented by Z = (Z1,...,7Z,). Then, the density
function of the complete data (X, Z), observable and unobservable variables, re-
spectively, is given by

20
f(z, z|9) = 2(9) afz® tzexp(—Bx%z), ¥ >0, z=1,2,....
The likelihood function corresponding to the complete data (X, Z), with {(X;, Z;)},
¢t =1,...,n, conditionally independent given 19, has expression
- az‘GZi a—1 le'
LYz, 2z) = H C’Z(Q) afz ™z exp(— P z;). (4)
i=1



After combining the likelihood function in (4) with the prior distribution, the
joint posterior distribution of ¥ results to be 7(¥|x, z, h) o 7(a|co, dy) 7(5|c1, dy)
7(0|ce, da) L(9; x, z). Taking into account the prior distribution in (3) and the like-
lihood function in (4), the the full conditional distributions turn out to be

ﬂ-(zi’xh 19) Xz eXp(_ﬁxiaZi)a’ziHZi7 R = 17 27 ) (5)

(|8, x, 2z, cp, dy) o om(HxZ) o exp ( - B Z x?‘zi)ﬂ(&\co, do), (6)
i—1 i=1

ﬂ-(ﬁ|o‘7mvzacl7d1) :Ga(6;01+n7d1—|—2$?2i> (7)
i=1
62?:1 Zi
and 7(0|z,c2,ds) ¢ ———m(0|ca, ds). (8)

{C@)}"

Notice that in (5), since Y 7o, axf* is a convergent series and kexp(—kSz%)
< exp(—pz®), for k 2 1, the series ), | kexp(—kfz®) also converges, so that this
conditional distribution is a member of the power series family. The probability
mass function in (5) is given in the following proposition.

Proposition 2.1. The full conditional distribution in (5) has expression

ziexp{ =Bz (2 — 1) }a,, 07!

W(Zz‘xlaﬁ) = C,(eefgx?)

C =12, (9)

Proof. According to Johnson et al. (2005, Section 2.2.1), it can be shown that the
moment generating function (mgf) of Z evaluated at ¢ is C'(fe')/{C(0) + by}, where
by = 0 for the logarithmic distribution and by = ag for the remaining distributions
in Table 1. Moreover, E(Z) = 0dlog{C(0)}/df. The normalizing constant in (5) is
computed in two steps. Firstly, using the mgf of Z, we can write

exp(—pafz)as 0% ai0”

m(alen 0) o GG Ty = Sy

=12, (10)

where af = exp(—Ba{'z)a., and C;(0) = C(fe 7). Secondly, computing the
expectation from (10) we obtain

d 0 . .
00— log{CH (O = ——— e P O (PP
do Og{ z( )} C(Qe_ﬁxi)e ( e )
as the normalizing constant for (10), which lead us to the result in (9). ]

Samples from Z in (9) are drawn by applying the rejection method (Devroye,
1986). In (6), the distribution is log-concave and the sampling is straightforward
with the adaptive rejection method (Gilks & Wild, 1992; Wild & Gilks, 1993). We
emphasize that the distribution of g in (7) is the same whichever the distribution
in Table 1.

For the geometric distribution, 6 in (8) is sampled from a Be(ca+> 1 | zi—n, do+
n) distribution, whereas the remaining distributions in Table 1 require Metropolis
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steps. Following Chen et al. (2000, Section 2.2), first we make the transformation
¢ = log(#), for the Poisson and binomial distributions, and £ = log{0/(1 — )}, for
the logarithmic distribution. Then, we derive £(§) = log{n(¢|z, c2,ds)} from (8).
Up to a constant, we have that
(E) = (e + 0, )€ — doe — nlog{exp(e€) — 1},
UE) = (ca+ 200, z0)€ — (2 +da + 3071 2i) log(1 + €°) — nlog{log(1 + €*)}
and  ((&) = (ca+ Y| 2)€ — dae® — nlog{(1 + €)™ — 1},

for the Poisson, logarithmic and binomial distributions, respectlvely A proposal
value £* ~ N(§ O'A) is generated, where £ maximizes / (&) and & O'g is minus the inverse

of d20(£)/d€? evaluated at & = £, where

PUE) _ exp(ef + §){ef — exp(ef) +1)
CEE A T
) € ¢ {log(1 + ¢f) — ¢}
@ et ) A e T T o log(1 1 P
d*((€) (1+eS)™2es{me* — (1 +e5)™ + 1}
and a2 = —dye® +mn {1+ es)m —1}2 ’

for the Poisson, logarithmic and binomial distributions, respectively. The maximiza-
tion of £(&) can be carried out with the Nelder-Mead algorithm provided by O’Neill
(1971). A move from ¢ to £* is done with probability

. {w<5*|->¢(<f—s>/ag> 1}
(€l ((&* — €)/e)

where ¢(-) denotes the standard normal probability density function.

With respect to the DFR family in Chahkandi & Ganjali (2009), we set a@ = 1

and skip the step in (6). The MCMC computations were implemented using the

FORTRAN language. We have also written BUGS codes in OpenBUGS (Thomas

et al., 2006) for the distributions in Table 1. The computational codes are available
on request from the authors.

(11)

2.1 Model assessment

In this section a device for the assessment of model fitting is presented. Taking into
account the cumulative distribution function in (1), it follows that

C(BePXF)
C(0)

Therefore, under the postulated model, Q(X,9) = —> 1"  log{F(X;,9)} is dis-
tributed as a Ga(n, 1) random variable. The pivotal quantity Q(X,) is a key
element for model checking. If 19 denotes the data generating value of ¥ and ¥pest
is drawn from the posterior distribution of ¥ given X, Johnson (2007) proved that
Q(X, 1Y) and Q(X, Vpost) have the same distribution. As recommended by Johnson
(2007), a useful device for model assessment can be based on graphical comparisons
of the posterior distribution of this pivotal quantity to its reference distribution.
This graphical diagnostic may reveal model inadequacy.

F(X;,9)=1- Uniform(0,1), i =1,...,n.
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3 A simulation study

In this section we present the results of a simulation study. Our study comprises
the exponential logarithmic (EL), Weibull geometric (WG) and Weibull Poisson
(WP) distributions. Some frequentist properties of the Bayesian estimators are
assessed. The hyperparameters in (3) were set at ¢g = dy = 0.01, ¢; = dy =
0.01 and ¢ = dy = 1, whereas ¢o = dy = 0.01 for the WP distribution. For
each replication, after discarding the first 1000 iterations of the Gibbs sampler,
we used 30000 iterations with thinning equal to 10, thus obtaining 3000 samples
for each parameter. In Table 2 are shown some summaries from 500 replications.
The posterior mode estimate is the half sample mode (Bickel & Frithwirth, 2006)
available in the modesst package (Poncet, 2012) in R (R Core Team, 2013). The
scenario for the WP distribution resembles the conditions found in our example in
Section 4.

In general, the average of the posterior absolute deviations (MAD) and the mean
absolute error of the posterior estimates (MAE) do not differ so much. The biases
of the posterior means, medians and modes are negligible in most of the entries in
Table 2. For the parameter 6, under the scenarios in our study, there is a gain in
terms of bias when the posterior mode is taken as the point estimate.

Except for the parameter 6 in the EL distribution, the coverage probabilities
of the 95% highest posterior density (HPD) intervals differ from the nominal value
by at most 2%. Since in this case the sample size is n = 300, this result tells us
that larger sample sizes are required to reach a better approximation to the nominal
value, as we can see for the WG and WP distributions. The HPD intervals were
estimated following the steps described in Chen et al. (2000, Section 7.3.1).

4 Example

In this section we work out an example with the rent data set available in the
gamlss.data package (Stasinopoulos & Rigby, 2012) in R. The data set comprises
1969 observations on the monthly net rent values in Munich, in German Marks.
The survey was performed in April 1993. When running the Gibbs sampler, after
discarding the first 2000 iterations we used 500000 iterations with thinning equal to
50, which means 10000 samples for the posterior computations.

Figure 1 shows the histogram of the posterior samples of Q(X, 1) and Ga(-; 1969,
1) density function (left), as well as the empirical cumulative distribution function
(ecdf) and WG, WP and WL distributions fitted to the data (right). The overall
pattern of the plots in Figure 1(left) suggests that the best fit is achieved with the
WG distribution. In fact, the WG distribution fitted to the data in Figure 1(a,
right) matches more closely the ecdf than the WP and WL distributions.

The convergence of the chains was monitored by the Geweke’s criterion (Geweke,
1992) and graphical inspection of the chains. The results in Table 3 (last column)
and Figure 2 indicate the convergence of the chains.

In Table 3 we report the posterior summaries for the parameters of the WG
distribution. The posterior medians and modes are close to the posterior means,
therefore they were omitted in Table 3. It is important to stress that the estimates



Table 2: Posterior estimates from 500 replications (True: true value of the parame-
ter, Est.: average of the posterior means, medians and modes, MAD: average of the
posterior absolute deviations, MAE: mean absolute error of the posterior estimates
and CP: coverage probability of the 95% HPD interval).

Parameter True Est. MAD MAE CP
Exponential g 1.5 1.47 0.107 0.0928  0.968
logarithmic 1.48 0.107 0.0932
n = 300 1.48 0.110 0.0967
0 0.3 0.32 0.13 0.090  0.978
0.32 0.13 0.10
0.30 0.15 0.17
Weibull a 1.5 1.49 0.0523 0.0532  0.942
geometric 1.49 0.0523 0.0528
n = 1000 1.49 0.0531 0.0533
I6] 2 2.08 0.256 0.257  0.938
2.08 0.256 0.256
2.06 0.262 0.259
0 0.8 0.77 0.051 0.052  0.948
0.78 0.051 0.049
0.79 0.053 0.045
Weibull a 2.7 2.67 0.0532 0.0562  0.930
Poisson 2.67 0.0521 0.0553
n = 1500 2.68 0.0546 0.0542
I6] 0.008 0.000846 0.000180 0.000166 0.934

0.000807 0.000160 0.000159
0.000741 0.000191 0.000170

0 3.9 4.42 0.981 0.966  0.934
4.23 0.955 0.939
3.96 1.04 1.01
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Figure 1: Left. Histogram of the posterior samples of Q(X,) and Ga(-;1969, 1)
density function. Right. Empirical cumulative distribution function (solid) and
fitted distributions (dashed). (a) WG, (b) WP and (¢) WL distributions.
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Figure 2: Trace plots of the chains, histograms and approximate marginal posterior
density functions for the parameters of the WG distribution.

Table 3: Posterior summaries for the parameters of the WG distribution.

Standard 95% HPD p-value
Parameter ~ Mean deviation interval (Geweke)
@ 3.38 0.0883 (3.21, 3.56) 0.535
o] 0.0000907 0.0000364 (0.0000330, 0.000159) 0.571
0 0.920 0.0195 (0.885, 0.957) 0.615

of a;, both point and intervalar, are distant from 1, suggesting that the Weibull
distribution does not yield a good fit. This is in agreement with graphical checks
(not shown) for the Weibull distribution fit.

5 Conclusion

In this paper we deal with a three parameter family of distributions recently in-
troduced by Morais & Barreto-Souza (2011). This family has attractive properties.
Our proposal is based on data augmentation and MCMC simulation methods. A
detailed description of the Gibbs sampler for Bayesian inference is given. Moreover,
we present a diagnostic tool for model checking easily implemented as a by-product
of the chains generated by the Gibbs sampler.

The role of the hyperparameters in the prior distributions was assessed. Under
different degrees of vagueness of the prior distribution in (3), the differences are not
important when compared to the results reported in Sections 3 and 4.

Results of simulation studies with some distributions of the DFR family were
reported, for example, by Tahmasbi & Rezaei (2008) and Chahkandi & Ganjali



(2009) under a frequentist viewpoint. However, neither these authors nor Morais &
Barreto-Souza (2011) pay attention to the coverage probability of the asymptotic
confidence intervals based on normal approximations.

We are now working in an extension of the proposed methodology to deal with
right censored data.
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